Your browser doesn't support javascript.
loading
Efficient targeted mutation of genomic essential genes in yeast Saccharomyces cerevisiae.
Yang, Shan; Cao, Xuan; Yu, Wei; Li, Shengying; Zhou, Yongjin J.
Afiliação
  • Yang S; Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
  • Cao X; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
  • Yu W; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Li S; Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
  • Zhou YJ; Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
Appl Microbiol Biotechnol ; 104(7): 3037-3047, 2020 Apr.
Article em En | MEDLINE | ID: mdl-32043190
ABSTRACT
Targeted gene mutation by allelic replacement is important for functional genomic analysis and metabolic engineering. However, it is challenging in mutating the essential genes with the traditional method by using a selection marker, since the first step of essential gene knockout will result in a lethal phenotype. Here, we developed a two-end selection marker (Two-ESM) method for site-directed mutation of essential genes in Saccharomyces cerevisiae with the aid of the CRISPR/Cas9 system. With this method, single and double mutations of the essential gene ERG20 (encoding farnesyl diphosphate synthase) in S. cerevisiae were successfully constructed with high efficiencies of 100%. In addition, the Two-ESM method significantly improved the mutation efficiency and simplified the genetic manipulation procedure compared with traditional methods. The genome integration and mutation efficiencies were further improved by dynamic regulation of mutant gene expression and optimization of the integration modules. This Two-ESM method will facilitate the construction of genomic mutations of essential genes for functional genomic analysis and metabolic flux regulation in yeasts. KEY POINTS • A Two-ESM strategy achieves mutations of essential genes with high efficiency of 100%. • The optimized three-module method improves the integration efficiency by more than three times. • This method will facilitate the functional genomic analysis and metabolic flux regulation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Mutagênese Sítio-Dirigida / Genoma Fúngico / Genes Essenciais Idioma: En Revista: Appl Microbiol Biotechnol Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Mutagênese Sítio-Dirigida / Genoma Fúngico / Genes Essenciais Idioma: En Revista: Appl Microbiol Biotechnol Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China