Your browser doesn't support javascript.
loading
Machine-learning-assisted insight into spin ice Dy2Ti2O7.
Samarakoon, Anjana M; Barros, Kipton; Li, Ying Wai; Eisenbach, Markus; Zhang, Qiang; Ye, Feng; Sharma, V; Dun, Z L; Zhou, Haidong; Grigera, Santiago A; Batista, Cristian D; Tennant, D Alan.
Afiliação
  • Samarakoon AM; Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA. samarakoonam@ornl.gov.
  • Barros K; Theoretical Division and CNLS, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
  • Li YW; National Center for Computational Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA.
  • Eisenbach M; National Center for Computational Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA.
  • Zhang Q; Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA.
  • Ye F; Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA.
  • Sharma V; Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803, USA.
  • Dun ZL; Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA.
  • Zhou H; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.
  • Grigera SA; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.
  • Batista CD; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.
  • Tennant DA; Instituto de Física de Líquidos y Sistemas Biológicos, UNLP-CONICET, La Plata, Argentina.
Nat Commun ; 11(1): 892, 2020 Feb 14.
Article em En | MEDLINE | ID: mdl-32060263
Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos