Your browser doesn't support javascript.
loading
NuSeT: A deep learning tool for reliably separating and analyzing crowded cells.
Yang, Linfeng; Ghosh, Rajarshi P; Franklin, J Matthew; Chen, Simon; You, Chenyu; Narayan, Raja R; Melcher, Marc L; Liphardt, Jan T.
Afiliação
  • Yang L; Bioengineering, Stanford University, Stanford, CA, United States of America.
  • Ghosh RP; BioX Institute, Stanford University, Stanford, CA, United States of America.
  • Franklin JM; ChEM-H, Stanford University, Stanford, CA, United States of America.
  • Chen S; Cell Biology Division, Stanford Cancer Institute, Stanford, CA, United States of America.
  • You C; Bioengineering, Stanford University, Stanford, CA, United States of America.
  • Narayan RR; BioX Institute, Stanford University, Stanford, CA, United States of America.
  • Melcher ML; ChEM-H, Stanford University, Stanford, CA, United States of America.
  • Liphardt JT; Cell Biology Division, Stanford Cancer Institute, Stanford, CA, United States of America.
PLoS Comput Biol ; 16(9): e1008193, 2020 09.
Article em En | MEDLINE | ID: mdl-32925919
Segmenting cell nuclei within microscopy images is a ubiquitous task in biological research and clinical applications. Unfortunately, segmenting low-contrast overlapping objects that may be tightly packed is a major bottleneck in standard deep learning-based models. We report a Nuclear Segmentation Tool (NuSeT) based on deep learning that accurately segments nuclei across multiple types of fluorescence imaging data. Using a hybrid network consisting of U-Net and Region Proposal Networks (RPN), followed by a watershed step, we have achieved superior performance in detecting and delineating nuclear boundaries in 2D and 3D images of varying complexities. By using foreground normalization and additional training on synthetic images containing non-cellular artifacts, NuSeT improves nuclear detection and reduces false positives. NuSeT addresses common challenges in nuclear segmentation such as variability in nuclear signal and shape, limited training sample size, and sample preparation artifacts. Compared to other segmentation models, NuSeT consistently fares better in generating accurate segmentation masks and assigning boundaries for touching nuclei.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Núcleo Celular / Aprendizado Profundo / Microscopia Limite: Humans Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Núcleo Celular / Aprendizado Profundo / Microscopia Limite: Humans Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos