Your browser doesn't support javascript.
loading
Exploring mechanistic links between extracellular branched-chain amino acids and muscle insulin resistance: an in vitro approach.
Crossland, Hannah; Smith, Kenneth; Idris, Iskandar; Phillips, Bethan E; Atherton, Philip J; Wilkinson, Daniel J.
Afiliação
  • Crossland H; Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom.
  • Smith K; Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom.
  • Idris I; Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom.
  • Phillips BE; Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom.
  • Atherton PJ; Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom.
  • Wilkinson DJ; Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom.
Am J Physiol Cell Physiol ; 319(6): C1151-C1157, 2020 12 01.
Article em En | MEDLINE | ID: mdl-33026831
ABSTRACT
Branched-chain amino acids (BCAAs) are essential for critical metabolic processes; however, recent studies have associated elevated plasma BCAA levels with increased risk of insulin resistance. Using skeletal muscle cells, we aimed to determine whether continued exposure of high extracellular BCAA would result in impaired insulin signaling and whether the compound sodium phenylbutyrate (PB), which induces BCAA metabolism, would lower extracellular BCAA, thereby alleviating their potentially inhibitory effects on insulin-mediated signaling. Prolonged exposure of elevated BCAA to cells resulted in impaired insulin receptor substrate 1/AKT signaling and insulin-stimulated glycogen synthesis. PB significantly reduced media BCAA and branched-chain keto acid concentrations and increased phosphorylation of AKT [+2.0 ± 0.1-fold; P < 0.001 versus without (-)PB] and AS160 (+3.2 ± 0.2-fold; P < 0.001 versus -PB); however, insulin-stimulated glycogen synthesis was further reduced upon PB treatment. Continued exposure of high BCAA resulted in impaired intracellular insulin signaling and glycogen synthesis, and while forcing BCAA catabolism using PB resulted in increases in proteins important for regulating glucose uptake, PB did not prevent the impairments in glycogen synthesis with BCAA exposure.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resistência à Insulina / Músculo Esquelético / Aminoácidos de Cadeia Ramificada / Glicogênio / Insulina Limite: Animals Idioma: En Revista: Am J Physiol Cell Physiol Assunto da revista: FISIOLOGIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resistência à Insulina / Músculo Esquelético / Aminoácidos de Cadeia Ramificada / Glicogênio / Insulina Limite: Animals Idioma: En Revista: Am J Physiol Cell Physiol Assunto da revista: FISIOLOGIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido