Plexus-specific effect of flicker-light stimulation on the retinal microvasculature assessed with optical coherence tomography angiography.
Am J Physiol Heart Circ Physiol
; 320(1): H23-H28, 2021 01 01.
Article
em En
| MEDLINE
| ID: mdl-33275537
In neural tissues, the coupling between neural activity and blood flow is a physiological key principle in blood flow regulation. We used optical coherence tomography angiography to investigate stimulus-evoked hemodynamic responses in different microvascular layers of the human retina. Twenty-two healthy subjects were included. Vessel density before and during light stimulation was measured using optical coherence tomography angiography and assessed for the superficial, intermediate, and deep capillary plexus of the retinal circulation. Volumetric blood flow was measured using a custom-built Doppler optical coherence tomography system. Our results show that flicker stimulation induced a significant increase in the vessel density of +9.9 ± 6.7% in the superficial capillary plexus, +6.6 ± 1.7% in the intermediate capillary plexus, and +4.9 ± 2.3% in the deep capillary plexus. The hyperemic response of the superficial capillary plexus was significantly higher compared to the intermediate capillary plexus (P = 0.02) and deep capillary plexus (P = 0.002). Volumetric retinal blood flow increased by +39.9 ± 34.9% in arteries and by +29.8 ± 16.8% in veins. In conclusion, we showed a strong increase in the retinal microvascular density in response to light stimulation, with the most pronounced effect in the superficial capillary plexus. This is compatible with the hypothesis that the microvasculature exerts an important function in mediating functional hyperemia in humans.NEW & NOTEWORTHY We present vessel density alterations in response to flicker stimulation using optical coherence tomography angiography and identified the superficial capillary plexus as the layer with the most pronounced effect. This points out the physiological importance of the microvasculature in mediating functional hyperemia and suggests a fine-tuned plexus-specific mechanism to meet cellular metabolic demands.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Vasos Retinianos
/
Angiografia
/
Tomografia de Coerência Óptica
/
Microvasos
/
Acoplamento Neurovascular
/
Microcirculação
Limite:
Adult
/
Female
/
Humans
/
Male
Idioma:
En
Revista:
Am J Physiol Heart Circ Physiol
Assunto da revista:
CARDIOLOGIA
/
FISIOLOGIA
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Áustria