Your browser doesn't support javascript.
loading
Metastability of diamond ramp-compressed to 2 terapascals.
Lazicki, A; McGonegle, D; Rygg, J R; Braun, D G; Swift, D C; Gorman, M G; Smith, R F; Heighway, P G; Higginbotham, A; Suggit, M J; Fratanduono, D E; Coppari, F; Wehrenberg, C E; Kraus, R G; Erskine, D; Bernier, J V; McNaney, J M; Rudd, R E; Collins, G W; Eggert, J H; Wark, J S.
Afiliação
  • Lazicki A; Lawrence Livermore National Laboratory, Livermore, CA, USA. lazicki1@llnl.gov.
  • McGonegle D; Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK.
  • Rygg JR; Laboratory for Laser Energetics, University of Rochester, Rochester, NY, USA.
  • Braun DG; Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA.
  • Swift DC; Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA.
  • Gorman MG; Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Smith RF; Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Heighway PG; Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Higginbotham A; Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Suggit MJ; Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK.
  • Fratanduono DE; Department of Physics, University of York, York, UK.
  • Coppari F; Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK.
  • Wehrenberg CE; Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Kraus RG; Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Erskine D; Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Bernier JV; Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • McNaney JM; Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Rudd RE; Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Collins GW; Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Eggert JH; Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Wark JS; Laboratory for Laser Energetics, University of Rochester, Rochester, NY, USA.
Nature ; 589(7843): 532-535, 2021 01.
Article em En | MEDLINE | ID: mdl-33505034
ABSTRACT
Carbon is the fourth-most prevalent element in the Universe and essential for all known life. In the elemental form it is found in multiple allotropes, including graphite, diamond and fullerenes, and it has long been predicted that even more structures can exist at pressures greater than those at Earth's core1-3. Several phases have been predicted to exist in the multi-terapascal regime, which is important for accurate modelling of the interiors of carbon-rich exoplanets4,5. By compressing solid carbon to 2 terapascals (20 million atmospheres; more than five times the pressure at Earth's core) using ramp-shaped laser pulses and simultaneously measuring nanosecond-duration time-resolved X-ray diffraction, we found that solid carbon retains the diamond structure far beyond its regime of predicted stability. The results confirm predictions that the strength of the tetrahedral molecular orbital bonds in diamond persists under enormous pressure, resulting in large energy barriers that hinder conversion to more-stable high-pressure allotropes1,2, just as graphite formation from metastable diamond is kinetically hindered at atmospheric pressure. This work nearly doubles the highest pressure at which X-ray diffraction has been recorded on any material.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nature Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nature Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos