Your browser doesn't support javascript.
loading
Developmental synaptic regulator, TWEAK/Fn14 signaling, is a determinant of synaptic function in models of stroke and neurodegeneration.
Nagy, Dávid; Ennis, Katelin A; Wei, Ru; Su, Susan C; Hinckley, Christopher A; Gu, Rong-Fang; Gao, Benbo; Massol, Ramiro H; Ehrenfels, Chris; Jandreski, Luke; Thomas, Ankur M; Nelson, Ashley; Gyoneva, Stefka; Hajós, Mihály; Burkly, Linda C.
Afiliação
  • Nagy D; Clinical Sciences, Biogen, Cambridge, MA 02142.
  • Ennis KA; Biogen Postdoctoral Scientist Program, Cellular Physiology, Biogen, Cambridge, MA 02142.
  • Wei R; Genetic and Neurodevelopmental Disease Research, Biogen, Cambridge, MA 02142.
  • Su SC; Chemical Biology and Proteomics, Biogen, Cambridge, MA 02142.
  • Hinckley CA; Genetic and Neurodevelopmental Disease Research, Biogen, Cambridge, MA 02142.
  • Gu RF; Translational Cellular Sciences, Biogen, Cambridge, MA 02142.
  • Gao B; Chemical Biology and Proteomics, Biogen, Cambridge, MA 02142.
  • Massol RH; Chemical Biology and Proteomics, Biogen, Cambridge, MA 02142.
  • Ehrenfels C; Translational Cellular Sciences, Biogen, Cambridge, MA 02142.
  • Jandreski L; Translational Cellular Sciences, Biogen, Cambridge, MA 02142.
  • Thomas AM; Clinical Sciences, Biogen, Cambridge, MA 02142.
  • Nelson A; Genetic and Neurodevelopmental Disease Research, Biogen, Cambridge, MA 02142.
  • Gyoneva S; Genetic and Neurodevelopmental Disease Research, Biogen, Cambridge, MA 02142.
  • Hajós M; Genetic and Neurodevelopmental Disease Research, Biogen, Cambridge, MA 02142.
  • Burkly LC; Clinical Sciences, Biogen, Cambridge, MA 02142.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article em En | MEDLINE | ID: mdl-33526652
ABSTRACT
Identifying molecular mediators of neural circuit development and/or function that contribute to circuit dysfunction when aberrantly reengaged in neurological disorders is of high importance. The role of the TWEAK/Fn14 pathway, which was recently reported to be a microglial/neuronal axis mediating synaptic refinement in experience-dependent visual development, has not been explored in synaptic function within the mature central nervous system. By combining electrophysiological and phosphoproteomic approaches, we show that TWEAK acutely dampens basal synaptic transmission and plasticity through neuronal Fn14 and impacts the phosphorylation state of pre- and postsynaptic proteins in adult mouse hippocampal slices. Importantly, this is relevant in two models featuring synaptic deficits. Blocking TWEAK/Fn14 signaling augments synaptic function in hippocampal slices from amyloid-beta-overexpressing mice. After stroke, genetic or pharmacological inhibition of TWEAK/Fn14 signaling augments basal synaptic transmission and normalizes plasticity. Our data support a glial/neuronal axis that critically modifies synaptic physiology and pathophysiology in different contexts in the mature brain and may be a therapeutic target for improving neurophysiological outcomes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sinapses / Transdução de Sinais / Acidente Vascular Cerebral / Receptor de TWEAK / Degeneração Neural Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sinapses / Transdução de Sinais / Acidente Vascular Cerebral / Receptor de TWEAK / Degeneração Neural Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2021 Tipo de documento: Article