Your browser doesn't support javascript.
loading
Cardiac myosin binding protein-C phosphorylation accelerates ß-cardiac myosin detachment rate in mouse myocardium.
Tanner, Bertrand C W; Previs, Michael J; Wang, Yuan; Robbins, Jeffrey; Palmer, Bradley M.
Afiliação
  • Tanner BCW; Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont.
  • Previs MJ; Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont.
  • Wang Y; Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont.
  • Robbins J; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
  • Palmer BM; Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont.
Am J Physiol Heart Circ Physiol ; 320(5): H1822-H1835, 2021 05 01.
Article em En | MEDLINE | ID: mdl-33666504
ABSTRACT
Cardiac myosin binding protein-C (cMyBP-C) is a thick filament protein that influences sarcomere stiffness and modulates cardiac contraction-relaxation through its phosphorylation. Phosphorylation of cMyBP-C and ablation of cMyBP-C have been shown to increase the rate of MgADP release in the acto-myosin cross-bridge cycle in the intact sarcomere. The influence of cMyBP-C on Pi-dependent myosin kinetics has not yet been examined. We investigated the effect of cMyBP-C, and its phosphorylation, on myosin kinetics in demembranated papillary muscle strips bearing the ß-cardiac myosin isoform from nontransgenic and homozygous transgenic mice lacking cMyBP-C. We used quick stretch and stochastic length-perturbation analysis to characterize rates of myosin detachment and force development over 0-12 mM Pi and at maximal (pCa 4.8) and near-half maximal (pCa 5.75) Ca2+ activation. Protein kinase A (PKA) treatment was applied to half the strips to probe the effect of cMyBP-C phosphorylation on Pi sensitivity of myosin kinetics. Increasing Pi increased myosin cross-bridge detachment rate similarly for muscles with and without cMyBP-C, although these rates were higher in muscle without cMyBP-C. Treating myocardial strips with PKA accelerated detachment rate when cMyBP-C was present over all Pi, but not when cMyBP-C was absent. The rate of force development increased with Pi in all muscles. However, Pi sensitivity of the rate force development was reduced when cMyBP-C was present versus absent, suggesting that cMyBP-C inhibits Pi-dependent reversal of the power stroke or stabilizes cross-bridge attachment to enhance the probability of completing the power stroke. These results support a functional role for cMyBP-C in slowing myosin detachment rate, possibly through a direct interaction with myosin or by altering strain-dependent myosin detachment via cMyBP-C-dependent stiffness of the thick filament and myofilament lattice. PKA treatment reduces the role for cMyBP-C to slow myosin detachment and thus effectively accelerates ß-myosin detachment in the intact myofilament lattice.NEW & NOTEWORTHY Length perturbation analysis was used to demonstrate that ß-cardiac myosin characteristic rates of detachment and recruitment in the intact myofilament lattice are accelerated by Pi, phosphorylation of cMyBP-C, and the absence of cMyBP-C. The results suggest that cMyBP-C normally slows myosin detachment, including Pi-dependent detachment, and that this inhibition is released with phosphorylation or absence of cMyBP-C.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Transporte / Miosinas Ventriculares / Força Muscular / Contração Miocárdica / Miocárdio Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Am J Physiol Heart Circ Physiol Assunto da revista: CARDIOLOGIA / FISIOLOGIA Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Transporte / Miosinas Ventriculares / Força Muscular / Contração Miocárdica / Miocárdio Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Am J Physiol Heart Circ Physiol Assunto da revista: CARDIOLOGIA / FISIOLOGIA Ano de publicação: 2021 Tipo de documento: Article