Your browser doesn't support javascript.
loading
An enhanced strategy integrating offline superimposed two-dimensional separation with mass defect filter and diagnostic ion filter: Comprehensive characterization of steroid alkaloids in Fritillariae Pallidiflorae Bulbus as a case study.
An, Ya-Ling; Wei, Wen-Long; Li, Hao-Jv; Li, Zhen-Wei; Yao, Chang-Liang; Qu, Hua; Yao, Shuai; Huang, Yong; Zhang, Jian-Qing; Bi, Qi-Rui; Li, Jia-Yuan; Guo, De-An.
Afiliação
  • An YL; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Haike Road 501, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A
  • Wei WL; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Haike Road 501, Shanghai, 201203, China.
  • Li HJ; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Haike Road 501, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A
  • Li ZW; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Haike Road 501, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A
  • Yao CL; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Haike Road 501, Shanghai, 201203, China.
  • Qu H; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Haike Road 501, Shanghai, 201203, China.
  • Yao S; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Haike Road 501, Shanghai, 201203, China.
  • Huang Y; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Haike Road 501, Shanghai, 201203, China.
  • Zhang JQ; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Haike Road 501, Shanghai, 201203, China.
  • Bi QR; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Haike Road 501, Shanghai, 201203, China.
  • Li JY; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Haike Road 501, Shanghai, 201203, China.
  • Guo DA; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Haike Road 501, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A
J Chromatogr A ; 1643: 462029, 2021 Apr 26.
Article em En | MEDLINE | ID: mdl-33752090
ABSTRACT
The inherent complexity of traditional Chinese medicines necessitates the application of multi-dimensional information to accomplish comprehensive profiling and confirmative identification of their chemical components. In this study, we display an enhanced strategy by integrating offline superimposed two-dimensional separation (S-2D-LC) with mass defect filter and diagnostic ion filter to comprehensively characterize the alkaloid composition of Fritillariae Pallidiflorae Bulbus (FPB). The superimposed HILIC × RP and UPCC × RP offline two-dimensional liquid chromatography system was constructed with superior orthogonality (R2=0.004 and R2=0.001) for chromatographic separation. In total, 70 fractions were collected after the first-dimensional chromatographic separation (HILIC and UPCC) and then analyzed by the second-dimensional reversed phase (RP) liquid chromatography coupled with Q-TOF/MS/MS in FAST DDA acquisition mode. A four-step interpretation strategy combining mass defect filter with diagnostic ion filter was developed to rapidly characterize alkaloids in Fritillaria species. Ultimately, a sum of 529 Fritillaria alkaloids were characterized from two botanical origins of FPB. The integrated strategy is practical to efficiently expose and comprehensively characterize more trace and isomeric components in complex herbal medicines.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esteroides / Fritillaria / Alcaloides Tipo de estudo: Diagnostic_studies Idioma: En Revista: J Chromatogr A Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esteroides / Fritillaria / Alcaloides Tipo de estudo: Diagnostic_studies Idioma: En Revista: J Chromatogr A Ano de publicação: 2021 Tipo de documento: Article