A Unique Gas-Migration, Trapping, and Emitting Strategy for High-Loading Single Atomic Cd Sites for Carbon Dioxide Electroreduction.
Nano Lett
; 21(10): 4262-4269, 2021 May 26.
Article
em En
| MEDLINE
| ID: mdl-33962514
Single-atom catalysts (SACs) exhibit great potential in heterogeneous catalysis. However, the achievement of obtaining high-loading SACs remains a bottleneck. Herein, we first demonstrate a unique gas-migration, trapping, and emitting strategy for building a kind of Cd-based SAC for CO2 reduction (CO2RR). The gas-migration and trapping processes (≤750 °C) endows the material with an ultrahigh Cd loading amount of 30.3 wt %, while the emitting process can facilely modulate the loading amount from 30.3 to 1.4 wt %. For the CO2RR, the Cd-NC SACs with a loading amount of 18.4 wt % exhibits the maximum Faraday efficiency of 91.4% for CO at -0.728 V. The operando infrared spectroscopy studies prove the presence of main intermediates *COO-, *COOH, and *CO on Cd-NC-5M SACs during the catalytic process, indicating that the CO2RR follows the proton-decoupled electron-transfer mechanism. Density functional theory simulations reveal that the Cd-N4 structure reduces the Gibbs free energy of the rate-determining step (the hydrogenation step of *COOH).
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
China