Your browser doesn't support javascript.
loading
Utilizing graph machine learning within drug discovery and development.
Gaudelet, Thomas; Day, Ben; Jamasb, Arian R; Soman, Jyothish; Regep, Cristian; Liu, Gertrude; Hayter, Jeremy B R; Vickers, Richard; Roberts, Charles; Tang, Jian; Roblin, David; Blundell, Tom L; Bronstein, Michael M; Taylor-King, Jake P.
Afiliação
  • Gaudelet T; Relation Therapeutics, London, UK.
  • Day B; Relation Therapeutics, London, UK.
  • Jamasb AR; The Computer Laboratory, University of Cambridge, UK.
  • Soman J; Relation Therapeutics, London, UK.
  • Regep C; The Computer Laboratory, University of Cambridge, UK.
  • Liu G; Department of Biochemistry, University of Cambridge, UK.
  • Hayter JBR; Relation Therapeutics, London, UK.
  • Vickers R; Relation Therapeutics, London, UK.
  • Roberts C; Relation Therapeutics, London, UK.
  • Tang J; Relation Therapeutics, London, UK.
  • Roblin D; Relation Therapeutics, London, UK.
  • Blundell TL; Relation Therapeutics, London, UK.
  • Bronstein MM; Juvenescence, London, UK.
  • Taylor-King JP; Mila, the Quebec AI Institute, Canada.
Brief Bioinform ; 22(6)2021 11 05.
Article em En | MEDLINE | ID: mdl-34013350
Graph machine learning (GML) is receiving growing interest within the pharmaceutical and biotechnology industries for its ability to model biomolecular structures, the functional relationships between them, and integrate multi-omic datasets - amongst other data types. Herein, we present a multidisciplinary academic-industrial review of the topic within the context of drug discovery and development. After introducing key terms and modelling approaches, we move chronologically through the drug development pipeline to identify and summarize work incorporating: target identification, design of small molecules and biologics, and drug repurposing. Whilst the field is still emerging, key milestones including repurposed drugs entering in vivo studies, suggest GML will become a modelling framework of choice within biomedical machine learning.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Gráficos por Computador / Estrutura Molecular / Modelos Moleculares / Descoberta de Drogas / Aprendizado de Máquina / Desenvolvimento de Medicamentos Tipo de estudo: Prognostic_studies Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Gráficos por Computador / Estrutura Molecular / Modelos Moleculares / Descoberta de Drogas / Aprendizado de Máquina / Desenvolvimento de Medicamentos Tipo de estudo: Prognostic_studies Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article