Your browser doesn't support javascript.
loading
Modeling clonal structure over narrow time frames via circulating tumor DNA in metastatic breast cancer.
Weber, Zachary T; Collier, Katharine A; Tallman, David; Forman, Juliet; Shukla, Sachet; Asad, Sarah; Rhoades, Justin; Freeman, Samuel; Parsons, Heather A; Williams, Nicole O; Barroso-Sousa, Romualdo; Stover, Elizabeth H; Mahdi, Haider; Cibulskis, Carrie; Lennon, Niall J; Ha, Gavin; Adalsteinsson, Viktor A; Tolaney, Sara M; Stover, Daniel G.
Afiliação
  • Weber ZT; The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 W. 12th Avenue, Columbus, OH, 43210, USA.
  • Collier KA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 W. 12th Avenue, Columbus, OH, 43210, USA.
  • Tallman D; Division of Medical Oncology, Department of Medicine, College of Medicine, The Ohio State University, 320 W. 10th Avenue, Columbus, OH, 43210, USA.
  • Forman J; The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 W. 12th Avenue, Columbus, OH, 43210, USA.
  • Shukla S; Broad Institute of Harvard & MIT, 415 Main St., Cambridge, MA, 02412, USA.
  • Asad S; Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
  • Rhoades J; Translational Immunogenomics Lab, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
  • Freeman S; Broad Institute of Harvard & MIT, 415 Main St., Cambridge, MA, 02412, USA.
  • Parsons HA; Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
  • Williams NO; Translational Immunogenomics Lab, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
  • Barroso-Sousa R; The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 W. 12th Avenue, Columbus, OH, 43210, USA.
  • Stover EH; Broad Institute of Harvard & MIT, 415 Main St., Cambridge, MA, 02412, USA.
  • Mahdi H; Broad Institute of Harvard & MIT, 415 Main St., Cambridge, MA, 02412, USA.
  • Cibulskis C; Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
  • Lennon NJ; The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 W. 12th Avenue, Columbus, OH, 43210, USA.
  • Ha G; Division of Medical Oncology, Department of Medicine, College of Medicine, The Ohio State University, 320 W. 10th Avenue, Columbus, OH, 43210, USA.
  • Adalsteinsson VA; Hospital Sirio-Libanes, SGAS 613/614, Conjunto E, Lote 95, Brasília, Brazil.
  • Tolaney SM; Broad Institute of Harvard & MIT, 415 Main St., Cambridge, MA, 02412, USA.
  • Stover DG; Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
Genome Med ; 13(1): 89, 2021 05 20.
Article em En | MEDLINE | ID: mdl-34016182
ABSTRACT

BACKGROUND:

Circulating tumor DNA (ctDNA) offers minimally invasive means to repeatedly interrogate tumor genomes, providing opportunities to monitor clonal dynamics induced by metastasis and therapeutic selective pressures. In metastatic cancers, ctDNA profiling allows for simultaneous analysis of both local and distant sites of recurrence. Despite the promise of ctDNA sampling, its utility in real-time genetic monitoring remains largely unexplored.

METHODS:

In this exploratory analysis, we characterize high-frequency ctDNA sample series collected over narrow time frames from seven patients with metastatic triple-negative breast cancer, each undergoing treatment with Cabozantinib, a multi-tyrosine kinase inhibitor (NCT01738438, https//clinicaltrials.gov/ct2/show/NCT01738438 ). Applying orthogonal whole exome sequencing, ultra-low pass whole genome sequencing, and 396-gene targeted panel sequencing, we analyzed 42 plasma-derived ctDNA libraries, representing 4-8 samples per patient with 6-42 days between samples. Integrating tumor fraction, copy number, and somatic variant information, we model tumor clonal dynamics, predict neoantigens, and evaluate consistency of genomic information from orthogonal assays.

RESULTS:

We measured considerable variation in ctDNA tumor faction in each patient, often conflicting with RECIST imaging response metrics. In orthogonal sequencing, we found high concordance between targeted panel and whole exome sequencing in both variant detection and variant allele frequency estimation (specificity = 95.5%, VAF correlation, r = 0.949), Copy number remained generally stable, despite resolution limitations posed by low tumor fraction. Through modeling, we inferred and tracked distinct clonal populations specific to each patient and built phylogenetic trees revealing alterations in hallmark breast cancer drivers, including TP53, PIK3CA, CDK4, and PTEN. Our modeling revealed varied responses to therapy, with some individuals displaying stable clonal profiles, while others showed signs of substantial expansion or reduction in prevalence, with characteristic alterations of varied literature annotation in relation to the study drug. Finally, we predicted and tracked neoantigen-producing alterations across time, exposing translationally relevant detection patterns.

CONCLUSIONS:

Despite technical challenges arising from low tumor content, metastatic ctDNA monitoring can aid our understanding of response and progression, while minimizing patient risk and discomfort. In this study, we demonstrate the potential for high-frequency monitoring of evolving genomic features, providing an important step toward scalable, translational genomics for clinical decision making.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Biomarcadores Tumorais / Evolução Clonal / DNA Tumoral Circulante Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Adult / Aged / Female / Humans / Middle aged Idioma: En Revista: Genome Med Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Biomarcadores Tumorais / Evolução Clonal / DNA Tumoral Circulante Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Adult / Aged / Female / Humans / Middle aged Idioma: En Revista: Genome Med Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos