A gentle introduction to understanding preclinical data for cancer pharmaco-omic modeling.
Brief Bioinform
; 22(6)2021 11 05.
Article
em En
| MEDLINE
| ID: mdl-34368843
A central goal of precision oncology is to administer an optimal drug treatment to each cancer patient. A common preclinical approach to tackle this problem has been to characterize the tumors of patients at the molecular and drug response levels, and employ the resulting datasets for predictive in silico modeling (mostly using machine learning). Understanding how and why the different variants of these datasets are generated is an important component of this process. This review focuses on providing such introduction aimed at scientists with little previous exposure to this research area.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Farmacogenética
/
Biomarcadores Tumorais
/
Biologia Computacional
/
Neoplasias
Tipo de estudo:
Prognostic_studies
Limite:
Animals
/
Humans
Idioma:
En
Revista:
Brief Bioinform
Assunto da revista:
BIOLOGIA
/
INFORMATICA MEDICA
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
França