Your browser doesn't support javascript.
loading
A gentle introduction to understanding preclinical data for cancer pharmaco-omic modeling.
Piyawajanusorn, Chayanit; Nguyen, Linh C; Ghislat, Ghita; Ballester, Pedro J.
Afiliação
  • Piyawajanusorn C; Cancer Research Center of Marseille, INSERM U1068, F-13009 Marseille, France.
  • Nguyen LC; Institut Paoli-Calmettes, F-13009 Marseille, France.
  • Ghislat G; Aix-Marseille Université, F-13284 Marseille, France.
  • Ballester PJ; CNRS UMR7258, F-13009 Marseille, France.
Brief Bioinform ; 22(6)2021 11 05.
Article em En | MEDLINE | ID: mdl-34368843
A central goal of precision oncology is to administer an optimal drug treatment to each cancer patient. A common preclinical approach to tackle this problem has been to characterize the tumors of patients at the molecular and drug response levels, and employ the resulting datasets for predictive in silico modeling (mostly using machine learning). Understanding how and why the different variants of these datasets are generated is an important component of this process. This review focuses on providing such introduction aimed at scientists with little previous exposure to this research area.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Farmacogenética / Biomarcadores Tumorais / Biologia Computacional / Neoplasias Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Farmacogenética / Biomarcadores Tumorais / Biologia Computacional / Neoplasias Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: França