Your browser doesn't support javascript.
loading
Molecular alterations due to Col5a1 haploinsufficiency in a mouse model of classic Ehlers-Danlos syndrome.
Machol, Keren; Polak, Urszula; Weisz-Hubshman, Monika; Song, I-Wen; Chen, Shan; Jiang, Ming-Ming; Chen-Evenson, Yuqing; Weis, Mary Ann E; Keene, Douglas R; Eyre, David R; Lee, Brendan H.
Afiliação
  • Machol K; Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA.
  • Polak U; Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA.
  • Weisz-Hubshman M; Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA.
  • Song IW; Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA.
  • Chen S; Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA.
  • Jiang MM; Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA.
  • Chen-Evenson Y; Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA.
  • Weis MAE; Department of Orthopedics and Sports Medicine, University of Washington Seattle, WA 98195, USA.
  • Keene DR; Micro-Imaging Center, Shriners Hospital for Children, Portland, OR 97239, USA.
  • Eyre DR; Department of Orthopedics and Sports Medicine, University of Washington Seattle, WA 98195, USA.
  • Lee BH; Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA.
Hum Mol Genet ; 31(8): 1325-1335, 2022 04 22.
Article em En | MEDLINE | ID: mdl-34740257
ABSTRACT
Type V collagen is a regulatory fibrillar collagen essential for type I collagen fibril nucleation and organization and its deficiency leads to structurally abnormal extracellular matrix (ECM). Haploinsufficiency of the Col5a1 gene encoding α(1) chain of type V collagen is the primary cause of classic Ehlers-Danlos syndrome (EDS). The mechanisms by which this initial insult leads to the spectrum of clinical presentation are not fully understood. Using transcriptome analysis of skin and Achilles tendons from Col5a1 haploinsufficient (Col5a1+/-) mice, we recognized molecular alterations associated with the tissue phenotypes. We identified dysregulation of ECM components including thrombospondin-1, lysyl oxidase, and lumican in the skin of Col5a1+/- mice when compared with control. We also identified upregulation of transforming growth factor ß1 (Tgf-ß) in serum and increased expression of pSmad2 in skin from Col5a1+/- mice, suggesting Tgf-ß dysregulation is a contributor to abnormal wound healing and atrophic scarring seen in classic EDS. Together, these findings support altered matrix to cell signaling as a component of the pathogenesis of the tissue phenotype in classic EDS and point out potential downstream signaling pathways that may be targeted for the treatment of this disease.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Síndrome de Ehlers-Danlos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Hum Mol Genet Assunto da revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Síndrome de Ehlers-Danlos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Hum Mol Genet Assunto da revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos