Your browser doesn't support javascript.
loading
MobileSal: Extremely Efficient RGB-D Salient Object Detection.
IEEE Trans Pattern Anal Mach Intell ; 44(12): 10261-10269, 2022 12.
Article em En | MEDLINE | ID: mdl-34898430
The high computational cost of neural networks has prevented recent successes in RGB-D salient object detection (SOD) from benefiting real-world applications. Hence, this article introduces a novel network, MobileSal, which focuses on efficient RGB-D SOD using mobile networks for deep feature extraction. However, mobile networks are less powerful in feature representation than cumbersome networks. To this end, we observe that the depth information of color images can strengthen the feature representation related to SOD if leveraged properly. Therefore, we propose an implicit depth restoration (IDR) technique to strengthen the mobile networks' feature representation capability for RGB-D SOD. IDR is only adopted in the training phase and is omitted during testing, so it is computationally free. Besides, we propose compact pyramid refinement (CPR) for efficient multi-level feature aggregation to derive salient objects with clear boundaries. With IDR and CPR incorporated, MobileSal performs favorably against state-of-the-art methods on six challenging RGB-D SOD datasets with much faster speed (450fps for the input size of 320×320) and fewer parameters (6.5M). The code is released at https://mmcheng.net/mobilesal.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Processamento de Imagem Assistida por Computador Tipo de estudo: Diagnostic_studies Idioma: En Revista: IEEE Trans Pattern Anal Mach Intell Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Processamento de Imagem Assistida por Computador Tipo de estudo: Diagnostic_studies Idioma: En Revista: IEEE Trans Pattern Anal Mach Intell Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2022 Tipo de documento: Article