Your browser doesn't support javascript.
loading
Multi-scale Selection and Multi-channel Fusion Model for Pancreas Segmentation Using Adversarial Deep Convolutional Nets.
Li, Meiyu; Lian, Fenghui; Guo, Shuxu.
Afiliação
  • Li M; College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.
  • Lian F; School of Aviation Operations and Services, Air Force Aviation University, Changchun, 130000, China.
  • Guo S; College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China. guosx@jlu.edu.cn.
J Digit Imaging ; 35(1): 47-55, 2022 02.
Article em En | MEDLINE | ID: mdl-34921356
ABSTRACT
Organ segmentation from existing imaging is vital to the medical image analysis and disease diagnosis. However, the boundary shapes and area sizes of the target region tend to be diverse and flexible. And the frequent applications of pooling operations in traditional segmentor result in the loss of spatial information which is advantageous to segmentation. All these issues pose challenges and difficulties for accurate organ segmentation from medical imaging, particularly for organs with small volumes and variable shapes such as the pancreas. To offset aforesaid information loss, we propose a deep convolutional neural network (DCNN) named multi-scale selection and multi-channel fusion segmentation model (MSC-DUnet) for pancreas segmentation. This proposed model contains three stages to collect detailed cues for accurate segmentation (1) increasing the consistency between the distributions of the output probability maps from the segmentor and the original samples by involving the adversarial mechanism that can capture spatial distributions, (2) gathering global spatial features from several receptive fields via multi-scale field selection (MSFS), and (3) integrating multi-level features located in varying network positions through the multi-channel fusion module (MCFM). Experimental results on the NIH Pancreas-CT dataset show that our proposed MSC-DUnet obtains superior performance to the baseline network by achieving an improvement of 5.1% in index dice similarity coefficient (DSC), which adequately indicates that MSC-DUnet has great potential for pancreas segmentation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Redes Neurais de Computação Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Digit Imaging Assunto da revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Redes Neurais de Computação Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Digit Imaging Assunto da revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China