Your browser doesn't support javascript.
loading
The oscillatory effects of rhythmic median nerve stimulation.
Houlgreave, Mairi S; Morera Maiquez, Barbara; Brookes, Matthew J; Jackson, Stephen R.
Afiliação
  • Houlgreave MS; School of Psychology, University of Nottingham, University Park, Nottingham NG7 2RD, UK; School of Physics and Astronomy, Sir Peter Mansfield Imaging Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK. Electronic address: mairi.houlgreave@nottingham.ac.uk.
  • Morera Maiquez B; School of Psychology, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
  • Brookes MJ; School of Physics and Astronomy, Sir Peter Mansfield Imaging Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
  • Jackson SR; School of Psychology, University of Nottingham, University Park, Nottingham NG7 2RD, UK; School of Medicine, Institute of Mental Health, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
Neuroimage ; 251: 118990, 2022 05 01.
Article em En | MEDLINE | ID: mdl-35158022
Entrainment of brain oscillations can be achieved using rhythmic non-invasive brain stimulation, and stimulation of the motor cortex at a frequency associated with sensorimotor inhibition can impair motor responses. Despite the potential for therapeutic application, these techniques do not lend themselves to use outside of a clinical setting. Here, the aim was to investigate whether rhythmic median nerve stimulation (MNS) could be used to entrain oscillations related to sensorimotor inhibition. MEG data were recorded from 20 participants during 400 trials, where for each trial 10 pulses of MNS were delivered either rhythmically or arrhythmically at 12 or 20 Hz. Our results demonstrate a frequency specific increase in relative amplitude in the contralateral somatosensory cortex during rhythmic but not arrhythmic stimulation. This was coupled with an increase in inter-trial phase coherence at the same frequency, suggesting that the oscillations synchronised with the pulses of MNS. The results show that 12 and 20 Hz rhythmic peripheral nerve stimulation can produce entrainment. Rhythmic MNS resulted in synchronous firing of neuronal populations within the contralateral somatosensory cortex meaning these neurons were engaged in processing of the afferent input. Therefore, MNS could prove therapeutically useful in disorders associated with hyperexcitability within the sensorimotor cortices.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Córtex Sensório-Motor / Córtex Motor Limite: Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Córtex Sensório-Motor / Córtex Motor Limite: Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2022 Tipo de documento: Article