Your browser doesn't support javascript.
loading
"Sticky Bone" Preparation Device: A Pilot Study on the Release of Cytokines and Growth Factors.
Gheno, Ezio; Alves, Gutemberg Gomes; Ghiretti, Roberto; Mello-Machado, Rafael Coutinho; Signore, Antonio; Lourenço, Emanuelle Stellet; Leite, Paulo Emílio Correa; Mourão, Carlos Fernando de Almeida Barros; Sohn, Dong-Seok; Calasans-Maia, Mônica Diuana.
Afiliação
  • Gheno E; Post-Graduation Program in Dentistry, Fluminense Federal University, Niteroi 24220-140, RJ, Brazil.
  • Alves GG; Surgical Sciences and Integrated Diagnostics Department, University of Genoa, 16132 Genoa, Italy.
  • Ghiretti R; Cell and Molecular Biology Department, Institute of Biology, Fluminense Federal University, Niteroi 24220-000, RJ, Brazil.
  • Mello-Machado RC; Clinical Research Unit of the Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24220-000, RJ, Brazil.
  • Signore A; Maxillofacial Surgeon, Private Practitioner, 46047 Porto, Italy.
  • Lourenço ES; Post-Graduation Program in Dentistry, Fluminense Federal University, Niteroi 24220-140, RJ, Brazil.
  • Leite PEC; Implant Dentistry Department, Universidade Iguaçu, Nova Iguaçu 26260-045, RJ, Brazil.
  • Mourão CFAB; Surgical Sciences and Integrated Diagnostics Department, University of Genoa, 16132 Genoa, Italy.
  • Sohn DS; Therapeutic Dentistry Department, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia.
  • Calasans-Maia MD; Post-Graduation Program in Dentistry, Fluminense Federal University, Niteroi 24220-140, RJ, Brazil.
Materials (Basel) ; 15(4)2022 Feb 16.
Article em En | MEDLINE | ID: mdl-35208017
ABSTRACT
Sticky bone, a growth factor-enriched bone graft matrix, is a promising autologous material for bone tissue regeneration. However, its production is strongly dependent on manual handling steps. In this sense, a new device was developed to simplify the confection of the sticky bone, named Sticky Bone Preparation Device (SBPD®). The purpose of this pilot study was to investigate the suitability of the SBPD® to prepare biomaterials for bone regeneration with autologous platelet concentrates. The SBPD® allows the blending of particulate samples from synthetic, xenograft, or autogenous bone with autologous platelet concentrates, making it easy to use and avoiding the need of further manipulations for the combination of the materials. The protocol for the preparation of sticky bone samples using the SBPD® is described, and the resulting product is compared with hand-mixed SB preparations regarding in vitro parameters such as cell content and the ability to release growth factors and cytokines relevant to tissue regeneration. The entrapped cell content was estimated, and the ability to release biological mediators was assessed after 7 days of incubation in culture medium. Both preparations increased the leukocyte and platelet concentrations compared to whole-blood samples (p < 0.05), without significant differences between SB and SBPD®. SBPD® samples released several growth factors, including VEGF, FGFb, and PDGF, at concentrations physiologically equivalent to those released by SB preparations. Therefore, the use of SBPD® results in a similar product to the standard protocol, but with more straightforward and shorter preparation times and less manipulation. These preliminary results suggest this device as a suitable alternative for combining bone substitute materials with platelet concentrates for bone tissue regeneration.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Materials (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Materials (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil