Your browser doesn't support javascript.
loading
Gene therapy of yeast NDI1 on mitochondrial complex I dysfunction in rotenone-induced Parkinson's disease models in vitro and vivo.
Li, Hongzhi; Sun, Bohao; Huang, Yuting; Zhang, Jing; Xu, Xuejing; Shen, Yuqi; Chen, Zhuo; Yang, Jifeng; Shen, Luxi; Hu, Yongwu; Gu, Haihua.
Afiliação
  • Li H; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, Zhejiang, 325035, People's Republic of China.
  • Sun B; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, Zhejiang, 325035, People's Republic of China.
  • Huang Y; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, Zhejiang, 325035, People's Republic of China.
  • Zhang J; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, Zhejiang, 325035, People's Republic of China.
  • Xu X; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, Zhejiang, 325035, People's Republic of China.
  • Shen Y; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, Zhejiang, 325035, People's Republic of China.
  • Chen Z; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, Zhejiang, 325035, People's Republic of China.
  • Yang J; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, Zhejiang, 325035, People's Republic of China.
  • Shen L; Department of Internal Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
  • Hu Y; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, Zhejiang, 325035, People's Republic of China.
  • Gu H; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, Zhejiang, 325035, People's Republic of China.
Mol Med ; 28(1): 29, 2022 03 07.
Article em En | MEDLINE | ID: mdl-35255803
ABSTRACT

PURPOSE:

Parkinson's disease (PD) is the second most common neurodegenerative disease without cure or effective treatment. This study explores whether the yeast internal NADH-quinone oxidoreductase (NDI1) can functionally replace the defective mammalian mitochondrial complex I, which may provide a gene therapy strategy for treating sporadic PD caused by mitochondrial complex I dysfunction.

METHOD:

Recombinant lentivirus expressing NDI1 was transduced into SH-SY5Y cells, or recombinant adeno-associated virus type 5 expressing NDI1 was transduced into the right substantia nigra pars compacta (SNpc) of mouse. PD cell and mouse models were established by rotenone treatment. The therapeutic effects of NDI1 on rotenone-induced PD models in vitro and vivo were assessed in neurobehavior, neuropathology, and mitochondrial functions, by using the apomorphine-induced rotation test, immunohistochemistry, immunofluorescence, western blot, complex I enzyme activity determination, oxygen consumption detection, ATP content determination and ROS measurement.

RESULTS:

NDI1 was expressed and localized in mitochondria in SH-SY5Y cells. NDI1 resisted rotenone-induced changes in cell morphology, loss of cell viability, accumulation of α-synuclein and pS129 α-synuclein, mitochondrial ROS production and mitochondria-mediated apoptosis. The basal and maximal oxygen consumption, mitochondrial coupling efficiency, basal and oligomycin-sensitive ATP and complex I activity in cell model were significantly increased in rotenone + NDI1 group compared to rotenone + vector group. NDI1 was efficiently expressed in dopaminergic neurons in the right SNpc without obvious adverse effects. The rotation number to the right side (NDI1-treated side) was significantly increased compared to that to the left side (untreated side) in mouse model. The number of viable dopaminergic neurons, the expression of tyrosine hydroxylase, total and maximal oxygen consumption, mitochondrial coupling efficiency and complex I enzyme activity in right substantia nigra, and the content of dopamine in right striatum were significantly increased in rotenone + NDI1 group compared to rotenone + vector group.

CONCLUSION:

Yeast NDI1 can rescue the defect of oxidative phosphorylation in rotenone-induced PD cell and mouse models, and ameliorate neurobehavioral and neuropathological damages. The results may provide a basis for the yeast NDI1 gene therapy of sporadic PD caused by mitochondrial complex I dysfunction.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Doenças Neurodegenerativas / Proteínas de Saccharomyces cerevisiae Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Revista: Mol Med Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Doenças Neurodegenerativas / Proteínas de Saccharomyces cerevisiae Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Revista: Mol Med Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2022 Tipo de documento: Article