Propensity score matching enables batch-effect-corrected imputation in single-cell RNA-seq analysis.
Brief Bioinform
; 23(4)2022 07 18.
Article
em En
| MEDLINE
| ID: mdl-35821114
Developments of single-cell RNA sequencing (scRNA-seq) technologies have enabled biological discoveries at the single-cell resolution with high throughput. However, large scRNA-seq datasets always suffer from massive technical noises, including batch effects and dropouts, and the dropout is often shown to be batch-dependent. Most existing methods only address one of the problems, and we show that the popularly used methods failed in trading off batch effect correction and dropout imputation. Here, inspired by the idea of causal inference, we propose a novel propensity score matching method for scRNA-seq data (scPSM) by borrowing information and taking the weighted average from similar cells in the deep sequenced batch, which simultaneously removes the batch effect, imputes dropout and denoises data in the entire gene expression space. The proposed method is testified on two simulation datasets and a variety of real scRNA-seq datasets, and the results show that scPSM is superior to other state-of-the-art methods. First, scPSM improves clustering accuracy and mixes cells of the same type, suggesting its ability to keep cell type separation while correcting for batch. Besides, using the scPSM-integrated data as input yields results free of batch effects or dropouts in the differential expression analysis. Moreover, scPSM not only achieves ideal denoising but also preserves real biological structure for downstream gene-based analyses. Furthermore, scPSM is robust to hyperparameters and small datasets with a few cells but enormous genes. Comprehensive evaluations demonstrate that scPSM jointly provides desirable batch effect correction, imputation and denoising for recovering the biologically meaningful expression in scRNA-seq data.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Perfilação da Expressão Gênica
/
Análise de Célula Única
Idioma:
En
Revista:
Brief Bioinform
Assunto da revista:
BIOLOGIA
/
INFORMATICA MEDICA
Ano de publicação:
2022
Tipo de documento:
Article