Your browser doesn't support javascript.
loading
Structural basis of mammalian complex IV inhibition by steroids.
Di Trani, Justin M; Moe, Agnes; Riepl, Daniel; Saura, Patricia; Kaila, Ville R I; Brzezinski, Peter; Rubinstein, John L.
Afiliação
  • Di Trani JM; Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.
  • Moe A; Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
  • Riepl D; Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
  • Saura P; Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
  • Kaila VRI; Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
  • Brzezinski P; Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
  • Rubinstein JL; Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.
Proc Natl Acad Sci U S A ; 119(30): e2205228119, 2022 07 26.
Article em En | MEDLINE | ID: mdl-35858451
ABSTRACT
The mitochondrial electron transport chain maintains the proton motive force that powers adenosine triphosphate (ATP) synthesis. The energy for this process comes from oxidation of reduced nicotinamide adenine dinucleotide (NADH) and succinate, with the electrons from this oxidation passed via intermediate carriers to oxygen. Complex IV (CIV), the terminal oxidase, transfers electrons from the intermediate electron carrier cytochrome c to oxygen, contributing to the proton motive force in the process. Within CIV, protons move through the K and D pathways during turnover. The former is responsible for transferring two protons to the enzyme's catalytic site upon its reduction, where they eventually combine with oxygen and electrons to form water. CIV is the main site for respiratory regulation, and although previous studies showed that steroid binding can regulate CIV activity, little is known about how this regulation occurs. Here, we characterize the interaction between CIV and steroids using a combination of kinetic experiments, structure determination, and molecular simulations. We show that molecules with a sterol moiety, such as glyco-diosgenin and cholesteryl hemisuccinate, reversibly inhibit CIV. Flash photolysis experiments probing the rapid equilibration of electrons within CIV demonstrate that binding of these molecules inhibits proton uptake through the K pathway. Single particle cryogenic electron microscopy (cryo-EM) of CIV with glyco-diosgenin reveals a previously undescribed steroid binding site adjacent to the K pathway, and molecular simulations suggest that the steroid binding modulates the conformational dynamics of key residues and proton transfer kinetics within this pathway. The binding pose of the sterol group sheds light on possible structural gating mechanisms in the CIV catalytic cycle.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esteroides / Complexo IV da Cadeia de Transporte de Elétrons / Diosgenina Limite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esteroides / Complexo IV da Cadeia de Transporte de Elétrons / Diosgenina Limite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2022 Tipo de documento: Article