Your browser doesn't support javascript.
loading
High-resolution simulations of chromatin folding at genomic rearrangements in malignant B cells provide mechanistic insights into proto-oncogene deregulation.
Rico, Daniel; Kent, Daniel; Karataraki, Nefeli; Mikulasova, Aneta; Berlinguer-Palmini, Rolando; Walker, Brian A; Javierre, Biola M; Russell, Lisa J; Brackley, Chris A.
Afiliação
  • Rico D; Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
  • Kent D; Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
  • Karataraki N; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
  • Mikulasova A; Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
  • Berlinguer-Palmini R; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
  • Walker BA; Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
  • Javierre BM; Bio-Imaging Unit, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
  • Russell LJ; Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University, Indianapolis, Indiana 46202, USA.
  • Brackley CA; Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Campus ICO-Germans Trias i Pujol, Ctra de Can Ruti, 08916 Badalona, Barcelona, Spain.
Genome Res ; 2022 Jul 21.
Article em En | MEDLINE | ID: mdl-35863900
ABSTRACT
Genomic rearrangements are known to result in proto-oncogene deregulation in many cancers, but the link to 3D genome structure remains poorly understood. Here, we used the highly predictive heteromorphic polymer (HiP-HoP) model to predict chromatin conformations at the proto-oncogene CCND1 in healthy and malignant B cells. After confirming that the model gives good predictions of Hi-C data for the nonmalignant human B cell-derived cell line GM12878, we generated predictions for two cancer cell lines, U266 and Z-138. These possess genome rearrangements involving CCND1 and the immunoglobulin heavy locus (IGH), which we mapped using targeted genome sequencing. Our simulations showed that a rearrangement in U266 cells where a single IGH super-enhancer is inserted next to CCND1 leaves the local topologically associated domain (TAD) structure intact. We also observed extensive changes in enhancer-promoter interactions within the TAD, suggesting that it is the downstream chromatin remodeling which gives rise to the oncogene activation, rather than the presence of the inserted super-enhancer DNA sequence per se. Simulations of the IGH-CCND1 reciprocal translocation in Z-138 cells revealed that an oncogenic fusion TAD is created, encompassing CCND1 and the IGH super-enhancers. We predicted how the structure and expression of CCND1 changes in these different cell lines, validating this using qPCR and fluorescence in situ hybridization microscopy. Our work demonstrates the power of polymer simulations to predict differences in chromatin interactions and gene expression for different translocation breakpoints.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Genome Res Assunto da revista: BIOLOGIA MOLECULAR / GENETICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Genome Res Assunto da revista: BIOLOGIA MOLECULAR / GENETICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Reino Unido