Dietary sea buckthorn polysaccharide reduced lipid accumulation, alleviated inflammation and oxidative stress, and normalized imbalance of intestinal microbiota that was induced by high-fat diet in zebrafish Danio rerio.
Fish Physiol Biochem
; 48(6): 1717-1735, 2022 Dec.
Article
em En
| MEDLINE
| ID: mdl-35879492
The purpose of this study was to explore the beneficial effects of sea buckthorn polysaccharide (SP) on lipid metabolism, liver, and intestinal health in zebrafish fed with high-fat diet (HFD). The zebrafish were fed with regular diet (RD), HFD, and HFD supplemented with 2 g/kg (HFD_2SP) and 4 g/kg (HFD_4SP) of SP, respectively. Growth, serum biochemistry, histopathology, expression of genes involved in lipid metabolism, inflammation, oxidative stress and tight junction, and changes in intestinal microbiota were detected. Results showed that adding 2 and 4 g/kg of SP in the HFD significantly improved the survival rate of zebrafish; reduced the levels of serum triglyceride (TG), total cholesterol (TC), aspartate aminotransferase (AST), and alanine transaminase (ALT); and alleviated the lipid accumulation in the liver of zebrafish. Furthermore, SP significantly enhanced the antioxidant capacity of liver and intestine by up-regulating the expression of Nrf2 and Cu/Zn-SOD and alleviated liver and intestinal inflammation induced by HFD through up-regulating the expression of TGF-ß1 and suppressing the expression of P38MAPK, IL-8, and IL-1ß. Especially, dietary SP normalized intestinal microbiota imbalance caused by HFD and inhibited the proliferation of harmful bacteria, i.e., Mycobacterium, but promoted the proliferation of intestinal beneficial bacteria, i.e., Cetobacterium. In summary, 2 and 4 g/kg of dietary SP significantly reduced lipid accumulation, alleviated inflammation and oxidative stress, and normalized the imbalance of intestinal microbiota induced by HFD and consequently improved the survival rate of zebrafish.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Hippophae
/
Microbioma Gastrointestinal
Limite:
Animals
Idioma:
En
Revista:
Fish Physiol Biochem
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
China