Your browser doesn't support javascript.
loading
Regulation of mitochondrial proteostasis by the proton gradient.
Patron, Maria; Tarasenko, Daryna; Nolte, Hendrik; Kroczek, Lara; Ghosh, Mausumi; Ohba, Yohsuke; Lasarzewski, Yvonne; Ahmadi, Zeinab Alsadat; Cabrera-Orefice, Alfredo; Eyiama, Akinori; Kellermann, Tim; Rugarli, Elena I; Brandt, Ulrich; Meinecke, Michael; Langer, Thomas.
Afiliação
  • Patron M; Max Planck Institute for Biology of Ageing, Cologne, Germany.
  • Tarasenko D; Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.
  • Nolte H; Max Planck Institute for Biology of Ageing, Cologne, Germany.
  • Kroczek L; Max Planck Institute for Biology of Ageing, Cologne, Germany.
  • Ghosh M; Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.
  • Ohba Y; Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
  • Lasarzewski Y; Max Planck Institute for Biology of Ageing, Cologne, Germany.
  • Ahmadi ZA; Max Planck Institute for Biology of Ageing, Cologne, Germany.
  • Cabrera-Orefice A; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
  • Eyiama A; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
  • Kellermann T; Max Planck Institute for Biology of Ageing, Cologne, Germany.
  • Rugarli EI; Max Planck Institute for Biology of Ageing, Cologne, Germany.
  • Brandt U; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
  • Meinecke M; Institute for Genetics, University of Cologne, Cologne, Germany.
  • Langer T; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
EMBO J ; 41(16): e110476, 2022 08 16.
Article em En | MEDLINE | ID: mdl-35912435
Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multiproteomic approach to demonstrate the regulation of the m-AAA protease AFG3L2 by the mitochondrial proton gradient, coupling mitochondrial protein turnover to the energetic status of mitochondria. We identify TMBIM5 (previously also known as GHITM or MICS1) as a Ca2+ /H+ exchanger in the mitochondrial inner membrane, which binds to and inhibits the m-AAA protease. TMBIM5 ensures cell survival and respiration, allowing Ca2+ efflux from mitochondria and limiting mitochondrial hyperpolarization. Persistent hyperpolarization, however, triggers degradation of TMBIM5 and activation of the m-AAA protease. The m-AAA protease broadly remodels the mitochondrial proteome and mediates the proteolytic breakdown of respiratory complex I to confine ROS production and oxidative damage in hyperpolarized mitochondria. TMBIM5 thus integrates mitochondrial Ca2+ signaling and the energetic status of mitochondria with protein turnover rates to reshape the mitochondrial proteome and adjust the cellular metabolism.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prótons / Proteostase Idioma: En Revista: EMBO J Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prótons / Proteostase Idioma: En Revista: EMBO J Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha