Your browser doesn't support javascript.
loading
Can a Finite Chain of Hydrogen Cyanide Molecules Model a Crystal?
Hsieh, Chieh-Min; Grabbet, Björn; Zeller, Felix; Benter, Sanna; Scheele, Tarek; Sieroka, Norman; Neudecker, Tim.
Afiliação
  • Hsieh CM; University of Bremen, Institute for Physical and Theoretical Chemistry, Leobener Straße NW2, D-28359, Bremen, Germany.
  • Grabbet B; University of Bremen, Institute for Physical and Theoretical Chemistry, Leobener Straße NW2, D-28359, Bremen, Germany.
  • Zeller F; Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
  • Benter S; University of Bremen, Institute for Physical and Theoretical Chemistry, Leobener Straße NW2, D-28359, Bremen, Germany.
  • Scheele T; University of Bremen, Institute for Physical and Theoretical Chemistry, Leobener Straße NW2, D-28359, Bremen, Germany.
  • Sieroka N; Present address: Bergische Universität Wuppertal, Gaußstraße 20, D-42119, Wuppertal, Germany.
  • Neudecker T; University of Bremen, Institute for Physical and Theoretical Chemistry, Leobener Straße NW2, D-28359, Bremen, Germany.
Chemphyschem ; 23(23): e202200414, 2022 12 05.
Article em En | MEDLINE | ID: mdl-35946306
ABSTRACT
When calculating structural or spectroscopic properties of molecular crystals, the question arises whether it is sufficient to simulate only a single molecule or a small molecular cluster or whether the simulation of the entire crystal is indispensable. In this work we juxtapose calculations on the high-pressure structural properties of the (periodic) HCN crystal and chains of HCN molecules of finite length. We find that, in most cases, the behavior of the crystal can be reproduced by computational methods simulating only around 15 molecules. The pressure-induced lengthening of the C-H bond in HCN found in calculations on both the periodic and finite material are explained in terms of orbital interaction. Our results pave the way for a more thorough understanding of high-pressure structural properties of materials and give incentives for the design of materials that expand under pressure. In addition, they shed light on the complementarity between calculations on periodic materials and systems of finite size.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cianeto de Hidrogênio Idioma: En Revista: Chemphyschem Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cianeto de Hidrogênio Idioma: En Revista: Chemphyschem Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha