Your browser doesn't support javascript.
loading
Brainprints: identifying individuals from magnetoencephalograms.
Wu, Shenghao; Ramdas, Aaditya; Wehbe, Leila.
Afiliação
  • Wu S; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Ramdas A; Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Wehbe L; Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA.
Commun Biol ; 5(1): 852, 2022 08 22.
Article em En | MEDLINE | ID: mdl-35995976
Magnetoencephalography (MEG) is used to study a wide variety of cognitive processes. Increasingly, researchers are adopting principles of open science and releasing their MEG data. While essential for reproducibility, sharing MEG data has unforeseen privacy risks. Individual differences may make a participant identifiable from their anonymized recordings. However, our ability to identify individuals based on these individual differences has not yet been assessed. Here, we propose interpretable MEG features to characterize individual difference. We term these features brainprints (brain fingerprints). We show through several datasets that brainprints accurately identify individuals across days, tasks, and even between MEG and Electroencephalography (EEG). Furthermore, we identify consistent brainprint components that are important for identification. We study the dependence of identifiability on the amount of data available. We also relate identifiability to the level of preprocessing and the experimental task. Our findings reveal specific aspects of individual variability in MEG. They also raise concerns about unregulated sharing of brain data, even if anonymized.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Mapeamento Encefálico / Magnetoencefalografia Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Commun Biol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Mapeamento Encefálico / Magnetoencefalografia Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Commun Biol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos