Your browser doesn't support javascript.
loading
Machine learning outperformed logistic regression classification even with limit sample size: A model to predict pediatric HIV mortality and clinical progression to AIDS.
Domínguez-Rodríguez, Sara; Serna-Pascual, Miquel; Oletto, Andrea; Barnabas, Shaun; Zuidewind, Peter; Dobbels, Els; Danaviah, Siva; Behuhuma, Osee; Lain, Maria Grazia; Vaz, Paula; Fernández-Luis, Sheila; Nhampossa, Tacilta; Lopez-Varela, Elisa; Otwombe, Kennedy; Liberty, Afaaf; Violari, Avy; Maiga, Almoustapha Issiaka; Rossi, Paolo; Giaquinto, Carlo; Kuhn, Louise; Rojo, Pablo; Tagarro, Alfredo.
Afiliação
  • Domínguez-Rodríguez S; Pediatric Infectious Diseases Unit, Fundación para la Investigación Biomédica del Hospital 12 de Octubre, Madrid, Spain.
  • Serna-Pascual M; Pediatric Infectious Diseases Unit, Fundación para la Investigación Biomédica del Hospital 12 de Octubre, Madrid, Spain.
  • Oletto A; PENTA Foundation, Padova, Italy.
  • Barnabas S; Family Centre For Research With Ubuntu (FAMCRU), Stellenbosch University, Cape Town, South Africa.
  • Zuidewind P; Family Centre For Research With Ubuntu (FAMCRU), Stellenbosch University, Cape Town, South Africa.
  • Dobbels E; Family Centre For Research With Ubuntu (FAMCRU), Stellenbosch University, Cape Town, South Africa.
  • Danaviah S; Africa Health Research Institute (AHRI), Durban, South Africa.
  • Behuhuma O; Africa Health Research Institute (AHRI), Durban, South Africa.
  • Lain MG; Fundação Ariel Glaser contra o SIDA Pediátrico, Maputo, Mozambique.
  • Vaz P; Fundação Ariel Glaser contra o SIDA Pediátrico, Maputo, Mozambique.
  • Fernández-Luis S; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
  • Nhampossa T; Barcelona Institute for Global Health (ISGLOBAL), Barcelona, Spain.
  • Lopez-Varela E; Barcelona Institute for Global Health (ISGLOBAL), Barcelona, Spain.
  • Otwombe K; Barcelona Institute for Global Health (ISGLOBAL), Barcelona, Spain.
  • Liberty A; Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
  • Violari A; Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
  • Maiga AI; Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
  • Rossi P; Gabriel Toure University Hospital, Bamako, Mali.
  • Giaquinto C; Division of Immune and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Pediatrico Bambino Gesu, Rome, Italy.
  • Kuhn L; Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy.
  • Rojo P; Gertrude H. Sergievsky Center, Vagelos College of Physititlcians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States of America.
  • Tagarro A; Pediatric Infectious Diseases Unit, Fundación para la Investigación Biomédica del Hospital 12 de Octubre, Madrid, Spain.
PLoS One ; 17(10): e0276116, 2022.
Article em En | MEDLINE | ID: mdl-36240212
Logistic regression (LR) is the most common prediction model in medicine. In recent years, supervised machine learning (ML) methods have gained popularity. However, there are many concerns about ML utility for small sample sizes. In this study, we aim to compare the performance of 7 algorithms in the prediction of 1-year mortality and clinical progression to AIDS in a small cohort of infants living with HIV from South Africa and Mozambique. The data set (n = 100) was randomly split into 70% training and 30% validation set. Seven algorithms (LR, Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Naïve Bayes (NB), Artificial Neural Network (ANN), and Elastic Net) were compared. The variables included as predictors were the same across the models including sociodemographic, virologic, immunologic, and maternal status features. For each of the models, a parameter tuning was performed to select the best-performing hyperparameters using 5 times repeated 10-fold cross-validation. A confusion-matrix was built to assess their accuracy, sensitivity, and specificity. RF ranked as the best algorithm in terms of accuracy (82,8%), sensitivity (78%), and AUC (0,73). Regarding specificity and sensitivity, RF showed better performance than the other algorithms in the external validation and the highest AUC. LR showed lower performance compared with RF, SVM, or KNN. The outcome of children living with perinatally acquired HIV can be predicted with considerable accuracy using ML algorithms. Better models would benefit less specialized staff in limited resources countries to improve prompt referral in case of high-risk clinical progression.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Síndrome da Imunodeficiência Adquirida Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Child / Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Síndrome da Imunodeficiência Adquirida Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Child / Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Espanha