Your browser doesn't support javascript.
loading
Further insight into the potential toxicity of zearalenone-14-glucoside based on toxicokinetics, tissue distribution, transformation, and excretion in rats.
Lu, Qian; Sui, Ming; Luo, Ya-Wen; Luo, Jiao-Yang; Yang, Mei-Hua.
Afiliação
  • Lu Q; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
  • Sui M; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
  • Luo YW; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
  • Luo JY; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China. Electronic address: jyluo@implad.ac.cn.
  • Yang MH; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China. Electronic address: yangmeihua15@hotmail.com.
Ecotoxicol Environ Saf ; 246: 114184, 2022 Nov.
Article em En | MEDLINE | ID: mdl-36244169
ABSTRACT
Bioaccumulation and biotransformation are critical factors that affect the release of easily metabolizable chemicals to cause human toxicity. The glucoside-type modified mycotoxin Zearalenone-14-Glucoside (Z14G) has attracted global attention for its high occurrence in foodstuffs and the potential threat to humans as its high rate of transformation into parent forms. Given the limited toxicokinetics information, this study assessed the absorption, distribution, biotransformation and excretion of Z14G, aiming to define the potential risk of Z14G. The toxicokinetics of Z14G were assessed after intravenous (IV) or oral administration (PO) in SD rats at doses of 10 mg/kg·b.w. In addition, comparative work with the parent mycotoxin ZEN was performed in parallel. The determination of Z14G and its metabolites (ZEN, α-zearalenol, ß-zearalenol, α-zearalanol, ß-zearalanol) proceeded with a sensitive UHPLC-MS/MS method. Our research indicated that Z14G readily disappeared from the blood, and distributed throughout the tissues via transformation into its parent form ZEN, and excreted primarily through urine. More importantly, the metabolite α-ZEL was observed in most analyzed tissue, urine and feces samples. Overall, our findings highlight the importance of biotransformation with regard to Z14G, providing critical insight for the health risk assessment of co-exposure of humans to glucoside-type modified mycotoxins.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espectrometria de Massas em Tandem / Micotoxinas Tipo de estudo: Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Ecotoxicol Environ Saf Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espectrometria de Massas em Tandem / Micotoxinas Tipo de estudo: Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Ecotoxicol Environ Saf Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China