Your browser doesn't support javascript.
loading
Deep problems with neural network models of human vision.
Bowers, Jeffrey S; Malhotra, Gaurav; Dujmovic, Marin; Llera Montero, Milton; Tsvetkov, Christian; Biscione, Valerio; Puebla, Guillermo; Adolfi, Federico; Hummel, John E; Heaton, Rachel F; Evans, Benjamin D; Mitchell, Jeffrey; Blything, Ryan.
Afiliação
  • Bowers JS; School of Psychological Science, University of Bristol, Bristol, UK j.bowers@bristol.ac.uk; https://jeffbowers.blogs.bristol.ac.uk/ gaurav.malhotra@bristol.ac.uk marin.dujmovic@bristol.ac.uk m.lleramontero@bristol.ac.uk christian.tsvetkov@bristol.ac.uk valerio.biscione@gmail.com guillermo.puebla@bri
  • Malhotra G; School of Psychological Science, University of Bristol, Bristol, UK j.bowers@bristol.ac.uk; https://jeffbowers.blogs.bristol.ac.uk/ gaurav.malhotra@bristol.ac.uk marin.dujmovic@bristol.ac.uk m.lleramontero@bristol.ac.uk christian.tsvetkov@bristol.ac.uk valerio.biscione@gmail.com guillermo.puebla@bri
  • Dujmovic M; School of Psychological Science, University of Bristol, Bristol, UK j.bowers@bristol.ac.uk; https://jeffbowers.blogs.bristol.ac.uk/ gaurav.malhotra@bristol.ac.uk marin.dujmovic@bristol.ac.uk m.lleramontero@bristol.ac.uk christian.tsvetkov@bristol.ac.uk valerio.biscione@gmail.com guillermo.puebla@bri
  • Llera Montero M; School of Psychological Science, University of Bristol, Bristol, UK j.bowers@bristol.ac.uk; https://jeffbowers.blogs.bristol.ac.uk/ gaurav.malhotra@bristol.ac.uk marin.dujmovic@bristol.ac.uk m.lleramontero@bristol.ac.uk christian.tsvetkov@bristol.ac.uk valerio.biscione@gmail.com guillermo.puebla@bri
  • Tsvetkov C; School of Psychological Science, University of Bristol, Bristol, UK j.bowers@bristol.ac.uk; https://jeffbowers.blogs.bristol.ac.uk/ gaurav.malhotra@bristol.ac.uk marin.dujmovic@bristol.ac.uk m.lleramontero@bristol.ac.uk christian.tsvetkov@bristol.ac.uk valerio.biscione@gmail.com guillermo.puebla@bri
  • Biscione V; School of Psychological Science, University of Bristol, Bristol, UK j.bowers@bristol.ac.uk; https://jeffbowers.blogs.bristol.ac.uk/ gaurav.malhotra@bristol.ac.uk marin.dujmovic@bristol.ac.uk m.lleramontero@bristol.ac.uk christian.tsvetkov@bristol.ac.uk valerio.biscione@gmail.com guillermo.puebla@bri
  • Puebla G; School of Psychological Science, University of Bristol, Bristol, UK j.bowers@bristol.ac.uk; https://jeffbowers.blogs.bristol.ac.uk/ gaurav.malhotra@bristol.ac.uk marin.dujmovic@bristol.ac.uk m.lleramontero@bristol.ac.uk christian.tsvetkov@bristol.ac.uk valerio.biscione@gmail.com guillermo.puebla@bri
  • Adolfi F; School of Psychological Science, University of Bristol, Bristol, UK j.bowers@bristol.ac.uk; https://jeffbowers.blogs.bristol.ac.uk/ gaurav.malhotra@bristol.ac.uk marin.dujmovic@bristol.ac.uk m.lleramontero@bristol.ac.uk christian.tsvetkov@bristol.ac.uk valerio.biscione@gmail.com guillermo.puebla@bri
  • Hummel JE; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany fedeadolfi@gmail.com.
  • Heaton RF; Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA jehummel@illinois.edu rmflood2@illinois.edu.
  • Evans BD; Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA jehummel@illinois.edu rmflood2@illinois.edu.
  • Mitchell J; Department of Informatics, School of Engineering and Informatics, University of Sussex, Brighton, UK b.d.evans@sussex.ac.uk j.mitchell@napier.ac.uk.
  • Blything R; Department of Informatics, School of Engineering and Informatics, University of Sussex, Brighton, UK b.d.evans@sussex.ac.uk j.mitchell@napier.ac.uk.
Behav Brain Sci ; 46: e385, 2022 Dec 01.
Article em En | MEDLINE | ID: mdl-36453586
Deep neural networks (DNNs) have had extraordinary successes in classifying photographic images of objects and are often described as the best models of biological vision. This conclusion is largely based on three sets of findings: (1) DNNs are more accurate than any other model in classifying images taken from various datasets, (2) DNNs do the best job in predicting the pattern of human errors in classifying objects taken from various behavioral datasets, and (3) DNNs do the best job in predicting brain signals in response to images taken from various brain datasets (e.g., single cell responses or fMRI data). However, these behavioral and brain datasets do not test hypotheses regarding what features are contributing to good predictions and we show that the predictions may be mediated by DNNs that share little overlap with biological vision. More problematically, we show that DNNs account for almost no results from psychological research. This contradicts the common claim that DNNs are good, let alone the best, models of human object recognition. We argue that theorists interested in developing biologically plausible models of human vision need to direct their attention to explaining psychological findings. More generally, theorists need to build models that explain the results of experiments that manipulate independent variables designed to test hypotheses rather than compete on making the best predictions. We conclude by briefly summarizing various promising modeling approaches that focus on psychological data.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Percepção Visual / Redes Neurais de Computação Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Behav Brain Sci Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Percepção Visual / Redes Neurais de Computação Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Behav Brain Sci Ano de publicação: 2022 Tipo de documento: Article