Your browser doesn't support javascript.
loading
In-Home Older Adults' Activity Pattern Monitoring Using Depth Sensors: A Review.
Momin, Md Sarfaraz; Sufian, Abu; Barman, Debaditya; Dutta, Paramartha; Dong, Mianxiong; Leo, Marco.
Afiliação
  • Momin MS; Department of Computer Science, Kaliachak College, University of Gour Banga, Malda 732101, India.
  • Sufian A; Department of Computer & System Sciences, Visva-Bharati University, Bolpur 731235, India.
  • Barman D; Department of Computer Science, University of Gour Banga, Malda 732101, India.
  • Dutta P; Department of Computer & System Sciences, Visva-Bharati University, Bolpur 731235, India.
  • Dong M; Department of Computer & System Sciences, Visva-Bharati University, Bolpur 731235, India.
  • Leo M; Department of Science and Informatics, Muroran Institute of Technology, Muroran 050-8585, Hokkaido, Japan.
Sensors (Basel) ; 22(23)2022 Nov 23.
Article em En | MEDLINE | ID: mdl-36501769
The global population is aging due to many factors, including longer life expectancy through better healthcare, changing diet, physical activity, etc. We are also witnessing various frequent epidemics as well as pandemics. The existing healthcare system has failed to deliver the care and support needed to our older adults (seniors) during these frequent outbreaks. Sophisticated sensor-based in-home care systems may offer an effective solution to this global crisis. The monitoring system is the key component of any in-home care system. The evidence indicates that they are more useful when implemented in a non-intrusive manner through different visual and audio sensors. Artificial Intelligence (AI) and Computer Vision (CV) techniques may be ideal for this purpose. Since the RGB imagery-based CV technique may compromise privacy, people often hesitate to utilize in-home care systems which use this technology. Depth, thermal, and audio-based CV techniques could be meaningful substitutes here. Due to the need to monitor larger areas, this review article presents a systematic discussion on the state-of-the-art using depth sensors as primary data-capturing techniques. We mainly focused on fall detection and other health-related physical patterns. As gait parameters may help to detect these activities, we also considered depth sensor-based gait parameters separately. The article provides discussions on the topic in relation to the terminology, reviews, a survey of popular datasets, and future scopes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Serviços de Assistência Domiciliar Limite: Aged / Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Índia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Serviços de Assistência Domiciliar Limite: Aged / Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Índia