Your browser doesn't support javascript.
loading
A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study.
Barnes, Josue; Brendel, Matthew; Gao, Vianne R; Rajendran, Suraj; Kim, Junbum; Li, Qianzi; Malmsten, Jonas E; Sierra, Jose T; Zisimopoulos, Pantelis; Sigaras, Alexandros; Khosravi, Pegah; Meseguer, Marcos; Zhan, Qiansheng; Rosenwaks, Zev; Elemento, Olivier; Zaninovic, Nikica; Hajirasouliha, Iman.
Afiliação
  • Barnes J; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
  • Brendel M; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
  • Gao VR; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Tri-Institutional Computational Biology & Medicine Program, Cornell University, NY, USA.
  • Rajendran S; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Tri-Institutional Computational Biology & Medicine Program, Cornell University, NY, USA.
  • Kim J; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
  • Li Q; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Tri-Institutional Computational Biology & Medicine Program, Cornell University, NY, USA.
  • Malmsten JE; Ronald O Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA.
  • Sierra JT; QED Analytics, Princeton, NJ, USA.
  • Zisimopoulos P; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
  • Sigaras A; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
  • Khosravi P; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Computational Oncology, Depa
  • Meseguer M; IVI Valencia, Health Research Institute la Fe, Valencia, Spain.
  • Zhan Q; Ronald O Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA.
  • Rosenwaks Z; Ronald O Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA.
  • Elemento O; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Meyer Cancer Center, Weill C
  • Zaninovic N; Ronald O Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA.
  • Hajirasouliha I; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Meyer Cancer Center, Weill C
Lancet Digit Health ; 5(1): e28-e40, 2023 01.
Article em En | MEDLINE | ID: mdl-36543475
ABSTRACT

BACKGROUND:

One challenge in the field of in-vitro fertilisation is the selection of the most viable embryos for transfer. Morphological quality assessment and morphokinetic analysis both have the disadvantage of intra-observer and inter-observer variability. A third method, preimplantation genetic testing for aneuploidy (PGT-A), has limitations too, including its invasiveness and cost. We hypothesised that differences in aneuploid and euploid embryos that allow for model-based classification are reflected in morphology, morphokinetics, and associated clinical information.

METHODS:

In this retrospective study, we used machine-learning and deep-learning approaches to develop STORK-A, a non-invasive and automated method of embryo evaluation that uses artificial intelligence to predict embryo ploidy status. Our method used a dataset of 10 378 embryos that consisted of static images captured at 110 h after intracytoplasmic sperm injection, morphokinetic parameters, blastocyst morphological assessments, maternal age, and ploidy status. Independent and external datasets, Weill Cornell Medicine EmbryoScope+ (WCM-ES+; Weill Cornell Medicine Center of Reproductive Medicine, NY, USA) and IVI Valencia (IVI Valencia, Health Research Institute la Fe, Valencia, Spain) were used to test the generalisability of STORK-A and were compared measuring accuracy and area under the receiver operating characteristic curve (AUC).

FINDINGS:

Analysis and model development included the use of 10 378 embryos, all with PGT-A results, from 1385 patients (maternal age range 21-48 years; mean age 36·98 years [SD 4·62]). STORK-A predicted aneuploid versus euploid embryos with an accuracy of 69·3% (95% CI 66·9-71·5; AUC 0·761; positive predictive value [PPV] 76·1%; negative predictive value [NPV] 62·1%) when using images, maternal age, morphokinetics, and blastocyst score. A second classification task trained to predict complex aneuploidy versus euploidy and single aneuploidy produced an accuracy of 74·0% (95% CI 71·7-76·1; AUC 0·760; PPV 54·9%; NPV 87·6%) using an image, maternal age, morphokinetic parameters, and blastocyst grade. A third classification task trained to predict complex aneuploidy versus euploidy had an accuracy of 77·6% (95% CI 75·0-80·0; AUC 0·847; PPV 76·7%; NPV 78·0%). STORK-A reported accuracies of 63·4% (AUC 0·702) on the WCM-ES+ dataset and 65·7% (AUC 0·715) on the IVI Valencia dataset, when using an image, maternal age, and morphokinetic parameters, similar to the STORK-A test dataset accuracy of 67·8% (AUC 0·737), showing generalisability.

INTERPRETATION:

As a proof of concept, STORK-A shows an ability to predict embryo ploidy in a non-invasive manner and shows future potential as a standardised supplementation to traditional methods of embryo selection and prioritisation for implantation or recommendation for PGT-A.

FUNDING:

US National Institutes of Health.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Diagnóstico Pré-Implantação Tipo de estudo: Diagnostic_studies / Guideline / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male / Middle aged / Pregnancy País/Região como assunto: America do norte Idioma: En Revista: Lancet Digit Health Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Diagnóstico Pré-Implantação Tipo de estudo: Diagnostic_studies / Guideline / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male / Middle aged / Pregnancy País/Região como assunto: America do norte Idioma: En Revista: Lancet Digit Health Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos