Your browser doesn't support javascript.
loading
Photo-Fenton self-cleaning carbon fibers membrane supported with Zr-MOF@Fe2O3 for effective phosphate removal from algae-rich water.
Zeng, Sen; Liu, Yuanshang; Wang, Yanmin; Wang, Yunhua; Zhou, Yaming; Li, Lihuang; Li, Shuo; Zhou, Xi; Wang, Miao; Zhao, Xueqin; Ren, Lei.
Afiliação
  • Zeng S; Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China; College of Materials Science and Engineering, Fujian University of Technology, Fu
  • Liu Y; Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China.
  • Wang Y; Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China.
  • Wang Y; Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China.
  • Zhou Y; Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China.
  • Li L; Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China.
  • Li S; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
  • Zhou X; Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China.
  • Wang M; Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China.
  • Zhao X; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China. Electronic address: zhaoxueqin@zstu.edu.cn.
  • Ren L; Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistr
Chemosphere ; 323: 138175, 2023 May.
Article em En | MEDLINE | ID: mdl-36863624
Adsorbents featuring abundant binding sites and high affinity to phosphate have been used to resolve water eutrophication. However, most of the developed adsorbents were focused on improving the adsorption ability of phosphate but ignored the effect of biofouling on the adsorption process especially used in the eutrophic water body. Herein, a novel MOF-supported carbon fibers (CFs) membrane with high regeneration and antifouling capability, was prepared by in-situ synthesis of well-dispersed MOF on CFs membrane, to remove phosphate from algae-rich water. The hybrid UiO-66-(OH)2@Fe2O3@CFs membrane exhibits a maximum adsorption capacity of 333.3 mg g-1 (pH 7.0) and excellent selectivity for phosphate sorption over coexisting ions. Moreover, the Fe2O3 nanoparticles anchored on the surface of UiO-66-(OH)2 through 'phenol-Fe(III)' reaction can endow the membrane with the robust photo-Fenton catalytic activity, which improves long-term reusability even under algae-rich condition. After 4 times photo-Fenton regenerations, the regeneration efficiency of the membrane could remain 92.2%, higher than that of hydraulic cleaning (52.6%). Moreover, the growth of C. pyrenoidosa was significantly reduced by 45.8% within 20 days via metabolism inhibition due to membrane-induced P-deficient conditions. Hence, the developed UiO-66-(OH)2@Fe2O3@CFs membrane holds significant prospects for large-scale application in phosphate sequestration of eutrophic water bodies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Água Limite: Humans Idioma: En Revista: Chemosphere Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Água Limite: Humans Idioma: En Revista: Chemosphere Ano de publicação: 2023 Tipo de documento: Article