Your browser doesn't support javascript.
loading
Diversification Models Conflate Likelihood and Prior, and Cannot be Compared Using Conventional Model-Comparison Tools.
May, Michael R; Rothfels, Carl J.
Afiliação
  • May MR; Department of Integrative Biology, University of California, Berkeley, CA, USA.
  • Rothfels CJ; University Herbarium and Department of Integrative Biology, University of California, Berkeley, CA, USA.
Syst Biol ; 72(3): 713-722, 2023 06 17.
Article em En | MEDLINE | ID: mdl-36897743
Time-calibrated phylogenetic trees are a tremendously powerful tool for studying evolutionary, ecological, and epidemiological phenomena. Such trees are predominantly inferred in a Bayesian framework, with the phylogeny itself treated as a parameter with a prior distribution (a "tree prior"). However, we show that the tree "parameter" consists, in part, of data, in the form of taxon samples. Treating the tree as a parameter fails to account for these data and compromises our ability to compare among models using standard techniques (e.g., marginal likelihoods estimated using path-sampling and stepping-stone sampling algorithms). Since accuracy of the inferred phylogeny strongly depends on how well the tree prior approximates the true diversification process that gave rise to the tree, the inability to accurately compare competing tree priors has broad implications for applications based on time-calibrated trees. We outline potential remedies to this problem, and provide guidance for researchers interested in assessing the fit of tree models. [Bayes factors; Bayesian model comparison; birth-death models; divergence-time estimation; lineage diversification].
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Evolução Biológica Tipo de estudo: Prognostic_studies Idioma: En Revista: Syst Biol Assunto da revista: BIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Evolução Biológica Tipo de estudo: Prognostic_studies Idioma: En Revista: Syst Biol Assunto da revista: BIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos