Your browser doesn't support javascript.
loading
A Low-Temperature Synthetic Route Toward a High-Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysis.
Qu, Jie; Elgendy, Amr; Cai, Rongsheng; Buckingham, Mark A; Papaderakis, Athanasios A; de Latour, Hugo; Hazeldine, Kerry; Whitehead, George F S; Alam, Firoz; Smith, Charles T; Binks, David J; Walton, Alex; Skelton, Jonathan M; Dryfe, Robert A W; Haigh, Sarah J; Lewis, David J.
Afiliação
  • Qu J; Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • Elgendy A; Department of Chemistry and Sir Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • Cai R; Department of Materials, National Graphene Institute and Sir Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • Buckingham MA; Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • Papaderakis AA; Department of Chemistry and Sir Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • de Latour H; Department of Materials, National Graphene Institute and Sir Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • Hazeldine K; Department of Chemistry and the Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • Whitehead GFS; Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • Alam F; Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • Smith CT; Department of Physics and Astronomy and the Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • Binks DJ; Department of Physics and Astronomy and the Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • Walton A; Department of Chemistry and the Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • Skelton JM; Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • Dryfe RAW; Department of Chemistry and Sir Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • Haigh SJ; Department of Materials, National Graphene Institute and Sir Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • Lewis DJ; Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
Adv Sci (Weinh) ; 10(14): e2204488, 2023 May.
Article em En | MEDLINE | ID: mdl-36951493
ABSTRACT
High-entropy (HE) metal chalcogenides are a class of materials that have great potential in applications such as thermoelectrics and electrocatalysis. Layered 2D transition-metal dichalcogenides (TMDCs) are a sub-class of high entropy metal chalcogenides that have received little attention to date as their preparation currently involves complicated, energy-intensive, or hazardous synthetic steps. To address this, a low-temperature (500 °C) and rapid (1 h) single source precursor approach is successfully adopted to synthesize the hexernary high-entropy metal disulfide (MoWReMnCr)S2 . (MoWReMnCr)S2 powders are characterized by powder X-ray diffraction (pXRD) and Raman spectroscopy, which confirmed that the material is comprised predominantly of a hexagonal phase. The surface oxidation states and elemental compositions are studied by X-ray photoelectron spectroscopy (XPS) whilst the bulk morphology and elemental stoichiometry with spatial distribution is determined by scanning electron microscopy (SEM) with elemental mapping information acquired from energy-dispersive X-ray (EDX) spectroscopy. The bulk, layered material is subsequently exfoliated to ultra-thin, several-layer 2D nanosheets by liquid-phase exfoliation (LPE). The resulting few-layer HE (MoWReMnCr)S2 nanosheets are found to contain a homogeneous elemental distribution of metals at the nanoscale by high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) with EDX mapping. Finally, (MoWReMnCr)S2 is demonstrated as a hydrogen evolution electrocatalyst and compared to 2H-MoS2 synthesized using the molecular precursor approach. (MoWReMnCr)S2 with 20% w/w of high-conductivity carbon black displays a low overpotential of 229 mV in 0.5 M  H2 SO4 to reach a current density of 10 mA cm-2 , which is much lower than the overpotential of 362 mV for MoS2 . From density functional theory calculations, it is hypothesised that the enhanced catalytic activity is due to activation of the basal plane upon incorporation of other elements into the 2H-MoS2 structure, in particular, the first row TMs Cr and Mn.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Reino Unido