Your browser doesn't support javascript.
loading
Development, performance and microbial community analysis of a continuous-flow microalgal-bacterial biofilm photoreactor for municipal wastewater treatment.
Zhang, Xiaoyuan; Ji, Bin; Tian, Junli; Liu, Yu.
Afiliação
  • Zhang X; College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore. Electronic address: zhangxia
  • Ji B; Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China.
  • Tian J; College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
  • Liu Y; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Si
J Environ Manage ; 338: 117770, 2023 Jul 15.
Article em En | MEDLINE | ID: mdl-36965425
ABSTRACT
This work reported the development, performance and microbial community of microalgal-bacterial biofilms cultivated in a continuous-flow photoreactor for municipal wastewater treatment under various conditions. Results showed that microalgal-bacterial biofilms were successfully developed at a HRT of 9 h without external aeration, with a biofilm concentration of around 4690 mg/L being achieved in the steady-state. It was found that further increase of HRT to 12 h did not improve the overall accumulation of biofilm, whereas the growth of microalgae in biofilms was faster than bacteria in the initial stage, indicated by an increased chlorophyll-a&b content in biofilms. After which, the chlorophyll-a&b content in biofilms gradually stabilized at the level comparable with the seed, suggesting that there was a balanced distribution of microalgae and bacteria in biofilms. About 90% of TOC, 71.4% of total nitrogen and 72.6% of phosphorus were removed by microalgal-bacterial biofilms mainly through assimilation in the steady-state photoreactor run at the HRT of 12 h with external aeration. The community analysis further revealed that Cyanobacteria and Chloroflexi were the main components, while Chlorophyta appeared to be the dominant eukaryotic algal community in biofilms. This study could offer new insights into the development of microalgal-bacterial biofilms in a continuous-flow photoreactor for sustainable low-carbon municipal wastewater treatment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Purificação da Água / Microalgas Idioma: En Revista: J Environ Manage Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Purificação da Água / Microalgas Idioma: En Revista: J Environ Manage Ano de publicação: 2023 Tipo de documento: Article