Your browser doesn't support javascript.
loading
Adaptive model-based Magnetic Resonance.
Beracha, Inbal; Seginer, Amir; Tal, Assaf.
Afiliação
  • Beracha I; Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
  • Seginer A; Siemens Healthcare Ltd., Rosh Ha'ayeen, Israel.
  • Tal A; Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
Magn Reson Med ; 90(3): 839-851, 2023 09.
Article em En | MEDLINE | ID: mdl-37154407
PURPOSE: Conventional sequences are static in nature, fixing measurement parameters in advance in anticipation of a wide range of expected tissue parameter values. We set out to design and benchmark a new, personalized approach-termed adaptive MR-in which incoming subject data is used to update and fine-tune the pulse sequence parameters in real time. METHODS: We implemented an adaptive, real-time multi-echo (MTE) experiment for estimating T2 s. Our approach combined a Bayesian framework with model-based reconstruction. It maintained and continuously updated a prior distribution of the desired tissue parameters, including T2 , which was used to guide the selection of sequence parameters in real time. RESULTS: Computer simulations predicted accelerations between 1.7- and 3.3-fold for adaptive multi-echo sequences relative to static ones. These predictions were corroborated in phantom experiments. In healthy volunteers, our adaptive framework accelerated the measurement of T2 for n-acetyl-aspartate by a factor of 2.5. CONCLUSION: Adaptive pulse sequences that alter their excitations in real time could provide substantial reductions in acquisition times. Given the generality of our proposed framework, our results motivate further research into other adaptive model-based approaches to MRI and MRS.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Imageamento por Ressonância Magnética Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Magn Reson Med Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Israel

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Imageamento por Ressonância Magnética Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Magn Reson Med Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Israel