Your browser doesn't support javascript.
loading
Overexpression of CdtCIPK21 from triploid bermudagrass reduces salt and drought tolerance but increases chilling tolerance in transgenic rice.
Liu, Rui; Huang, Shilian; Huang, Anyao; Chen, Miao; Luo, Yurong; Guo, Zhenfei; Lu, Shaoyun.
Afiliação
  • Liu R; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China. Electronic address: 20181002003@scau.edu.cn.
  • Huang S; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China. Electronic address: huangshilian@gdaas.cn.
  • Huang A; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China. Electronic address: 20182002006@scau.edu.cn.
  • Chen M; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China. Electronic address: 15989086243@126.com.
  • Luo Y; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China. Electronic address: yrluo@scau.edu.cn.
  • Guo Z; College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address: zfguo@njau.edu.cn.
  • Lu S; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China. Electronic address: turflab@scau.edu.cn.
J Plant Physiol ; 286: 154006, 2023 Jul.
Article em En | MEDLINE | ID: mdl-37196413
ABSTRACT
Calcineurin B-like-interacting protein kinase (CIPK) is a serine/threonine kinase, which transmits the Ca2+ signal sensed by CBL proteins. A CdtCIPK21 showing highly identical to OsCIPK21 in rice was isolated from triploid bermudagrass (Cynodon dactylon × Cynodon transvaalensis). CdtCIPK21 transcript could be detected in roots, rhizomes, stems, stolons, and leaves, with highest level in roots. It was induced by salinity, dehydration and chilling, but reduced by ABA treatment. Transgenic rice plants overexpressing CdtCIPK21 had decreased salt and drought tolerance as well as ABA sensitivity but increased chilling tolerance. Lower SOD and CAT activities was observed in transgenic lines under salinity and drought stress conditions, but higher levels under chilling stress. Similarly, lower levels of proline concentration and P5CS1 and P5CS2 transcripts were maintained in transgenic lines under salinity and drought stresses, and higher levels were maintained under chilling. In addition, transgenic lines had lower transcript levels of ABA-independent genes (OsDREB1A, OsDREB1B, and OsDREB2A) and ABA responsive genes (OsLEA3, OsLIP9, and OsRAB16A) under salinity and drought but higher levels under chilling compared with WT. The results suggest that CdtCIPK21 regulates salt and drought tolerance negatively and chilling tolerance positively, which are associated with the altered ABA sensitivity, antioxidants, proline accumulation and expression of ABA-dependent and ABA-independent stress responsive genes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Regulação da Expressão Gênica de Plantas / Cynodon Idioma: En Revista: J Plant Physiol Assunto da revista: BOTANICA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Regulação da Expressão Gênica de Plantas / Cynodon Idioma: En Revista: J Plant Physiol Assunto da revista: BOTANICA Ano de publicação: 2023 Tipo de documento: Article