Your browser doesn't support javascript.
loading
Continuous synthesis of E. coli genome sections and Mb-scale human DNA assembly.
Zürcher, Jérôme F; Kleefeldt, Askar A; Funke, Louise F H; Birnbaum, Jakob; Fredens, Julius; Grazioli, Simona; Liu, Kim C; Spinck, Martin; Petris, Gianluca; Murat, Pierre; Rehm, Fabian B H; Sale, Julian E; Chin, Jason W.
Afiliação
  • Zürcher JF; Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
  • Kleefeldt AA; Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
  • Funke LFH; Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
  • Birnbaum J; Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
  • Fredens J; Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
  • Grazioli S; Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
  • Liu KC; Synthetic Biology for Clinical and Technological Innovation, Department of Biochemistry, National University of Singapore, Singapore, Singapore.
  • Spinck M; Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
  • Petris G; Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
  • Murat P; Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
  • Rehm FBH; Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
  • Sale JE; Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
  • Chin JW; Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
Nature ; 619(7970): 555-562, 2023 Jul.
Article em En | MEDLINE | ID: mdl-37380776
ABSTRACT
Whole-genome synthesis provides a powerful approach for understanding and expanding organism function1-3. To build large genomes rapidly, scalably and in parallel, we need (1) methods for assembling megabases of DNA from shorter precursors and (2) strategies for rapidly and scalably replacing the genomic DNA of organisms with synthetic DNA. Here we develop bacterial artificial chromosome (BAC) stepwise insertion synthesis (BASIS)-a method for megabase-scale assembly of DNA in Escherichia coli episomes. We used BASIS to assemble 1.1 Mb of human DNA containing numerous exons, introns, repetitive sequences, G-quadruplexes, and long and short interspersed nuclear elements (LINEs and SINEs). BASIS provides a powerful platform for building synthetic genomes for diverse organisms. We also developed continuous genome synthesis (CGS)-a method for continuously replacing sequential 100 kb stretches of the E. coli genome with synthetic DNA; CGS minimizes crossovers1,4 between the synthetic DNA and the genome such that the output for each 100 kb replacement provides, without sequencing, the input for the next 100 kb replacement. Using CGS, we synthesized a 0.5 Mb section of the E. coli genome-a key intermediate in its total synthesis1-from five episomes in 10 days. By parallelizing CGS and combining it with rapid oligonucleotide synthesis and episome assembly5,6, along with rapid methods for compiling a single genome from strains bearing distinct synthetic genome sections1,7,8, we anticipate that it will be possible to synthesize entire E. coli genomes from functional designs in less than 2 months.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Genoma Bacteriano / Cromossomos Artificiais Bacterianos / Escherichia coli / Biologia Sintética Limite: Humans Idioma: En Revista: Nature Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Genoma Bacteriano / Cromossomos Artificiais Bacterianos / Escherichia coli / Biologia Sintética Limite: Humans Idioma: En Revista: Nature Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Reino Unido