Your browser doesn't support javascript.
loading
CD22 blockade modulates microglia activity to suppress neuroinflammation following intracerebral hemorrhage.
Ren, Honglei; Pan, Yan; Wang, Danni; Hao, Hongying; Han, Ranran; Qi, Caiyun; Zhang, Wenjun; He, Wenyan; Shi, Fu-Dong; Liu, Qiang.
Afiliação
  • Ren H; Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China.
  • Pan Y; Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China.
  • Wang D; Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China.
  • Hao H; Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China.
  • Han R; Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China.
  • Qi C; Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China.
  • Zhang W; Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China.
  • He W; Advanced Innovation Center for Human Brain Protection, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing 100050, China. Electronic address: hewenyan77@163.com.
  • Shi FD; Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China; Advanced Innovation Center for Human Brain Protection, Ch
  • Liu Q; Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurology, The Second Hospital of Shandong
Pharmacol Res ; 196: 106912, 2023 Oct.
Article em En | MEDLINE | ID: mdl-37696483
ABSTRACT
Microglia are first responders to acute brain insults and initiate neuroinflammation to drive secondary tissue injury. Yet the key molecular switches in control of the inflammatory activity of microglia remain poorly understood. Intracerebral hemorrhage (ICH) is a devastating stroke subtype whereby a hematoma is formed within the brain parenchyma and associated with high mortality. Using a mouse model of ICH, we found upregulation of CD22 that predominantly occurred in microglia. Antibody blockade of CD22 led to a reduction in neurological deficits, brain lesion and hematoma volume. This was accompanied by reduced inflammatory activity, increased expression of alternative activation markers (CD206 and IL-10) and enhanced phagocytosis activity in microglia after ICH. CD22 blockade also led to an increase of phosphorylated SYK and AKT after ICH. Notably, the benefits of CD22 blockade were ablated in ICH mice subjected to microglial depletion with a colony-stimulating factor 1 receptor inhibitor PLX5622. Additionally, the protective effects of CD22 blockade was diminished in ICH mice receiving a SYK inhibitor R406. Together, our findings highlight CD22 as a key molecular switch to control the detrimental effects of microglia after acute brain injury, and provide a novel strategy to improve the outcome of ICH injury.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Lesões Encefálicas / Microglia / Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Pharmacol Res Assunto da revista: FARMACOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Lesões Encefálicas / Microglia / Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Pharmacol Res Assunto da revista: FARMACOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China