Multinuclear Zinc-Magnesium Hydroxide Carboxylates: A Predesigned Model System for Copolymerization of CO2 with Epoxides.
Inorg Chem
; 62(40): 16274-16279, 2023 Oct 09.
Article
em En
| MEDLINE
| ID: mdl-37712907
Among numerous catalysts in the ring-opening copolymerization of epoxides with carbon dioxide (CO2), zinc dicarboxylate complexes are the most common type, and in the family of metal-based homogeneous catalysts, zinc and magnesium complexes have attracted widespread attention. We report on the synthesis and structural characterization of a zinc-magnesium benzoate framework templated by the central hydroxide anion with µ3-κ2:κ2:κ2 coordination mode, [ZnMg2(µ3-OH)(O2CPh)5]n (n = 1 or 2). The resulting heterometallic system forms stable Lewis acid-base adducts with tetrahydrofuran (THF) and cyclohexene oxide (CHO), which crystallize as the hexanuclear zinc-magnesium hydroxide carboxylate cluster [ZnMg2(µ3-OH)(O2CPh)5(L)2]2 (L = THF or CHO). Their X-ray crystal structure analysis revealed that the Zn center prefers 4-fold coordination and the Mg centers demonstrated the ability to accommodate higher coordination numbers, and as a result, the heterocyclic molecules are exclusively bonded to 6-fold Mg atoms. The heteronuclear carboxylate aggregates appeared active in the copolymerization reaction at elevated temperatures to produce an alternating poly(cyclohexene carbonate).
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Inorg Chem
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Polônia