Your browser doesn't support javascript.
loading
Engineered CHO cells as a novel AAV production platform for gene therapy delivery.
Nagy, Abdou; Chakrabarti, Lina; Kurasawa, James; Mulagapati, Sri Hari Raju; Devine, Paul; Therres, Jamy; Chen, Zhongying; Schmelzer, Albert E.
Afiliação
  • Nagy A; Cell Culture and Fermentation Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA. abdou.nagy@astrazeneca.com.
  • Chakrabarti L; Cell Culture and Fermentation Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
  • Kurasawa J; Biologics Engineering, R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
  • Mulagapati SHR; Analytical Science, Biopharmaceutical Development, Biopharma R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
  • Devine P; Analytical Science, Biopharmaceutical Development, Biopharma R&D, AstraZeneca, Milstein Building, Granta Park, Cambridge, CB216GH, UK.
  • Therres J; Cell Culture and Fermentation Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
  • Chen Z; Clinical Pharmacology and Safety Sciences, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
  • Schmelzer AE; Cell Culture and Fermentation Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA. albert.schmelzer@astrazeneca.com.
Sci Rep ; 13(1): 19210, 2023 11 06.
Article em En | MEDLINE | ID: mdl-37932360
ABSTRACT
The Herpes simplex virus (HSV)-based platform for production of recombinant adeno-associated viral vectors (rAAVs) yields higher titers and increased percentage of full capsids when compared to the triple transient transfection (TTT) method. However, this platform currently faces two major challenges. The first challenge is the reliance on commercial media, sometimes supplemented with serum, leading to costly manufacturing and a high risk for introduction of adventitious agents. The second challenge is that the production of HSV-1 relies on adherent complementing Vero cells (V27), making it difficult to scale up. We engineered serum-free-adapted CHO cells expressing key HSV-1 entry receptors, HVEM and/or Nectin-1 to address the first challenge. Using high-throughput cloning methods, we successfully selected a HVEM receptor-expressing clone (CHO-HV-C1) that yields 1.62 × 109, 2.51 × 109, and 4.07 × 109 viral genome copies/mL with rAAV6.2-GFP, rAAV8-GFP, and rAAV9-GFP vectors respectively, within 24 h post rHSV-1 co-infection. Moreover, CHO-HV-C1-derived rAAVs had comparable in vitro transduction, infectivity, and biodistribution titers to those produced by TTT. The second challenge was addressed via engineering CHO-HV-C1 cells to express HSV-1 CP27. These cells successfully produced rHSV-1 vectors, but with significantly lower titers than V27 cells. Taken together, the CHO/HSV system provides a novel, scalable, reduced cost, serum-free AAV manufacturing platform.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Herpesvirus Humano 1 Limite: Animals Idioma: En Revista: Sci Rep Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Herpesvirus Humano 1 Limite: Animals Idioma: En Revista: Sci Rep Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos