Your browser doesn't support javascript.
loading
Anthracene and tetraphenylsilane based conjugated porous polymer nanoparticles for sensitive detection of nitroaromatics in water.
Sun, Xiaosong; Cui, Qihao; Dong, Wenyue; Duan, Qian; Fei, Teng.
Afiliação
  • Sun X; School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China.
  • Cui Q; School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China.
  • Dong W; School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China; Chongqing Research Institute, Changchun University of Science and Technology, Chongqing 401135, PR China. Electronic address: dongwenyue@cust.edu.cn.
  • Duan Q; School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China; Engineering Research Center for Optoelectronic Functional Materials, Ministry of Education, Changchun 130022, PR China. Electronic address: duanqian88@hotmail.com.
  • Fei T; State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123667, 2024 Mar 05.
Article em En | MEDLINE | ID: mdl-38000326
ABSTRACT
Conjugated porous polymers (CPPs) are a kind of promising sensing materials for the detection of nitroaromatic compounds, but their sensing applications in aqueous media are limited because of their poor dispersity or solubility in water. In this study, we prepared anthracene and tetraphenylsilane based CPPs named PSiAn by conventional Suzuki coupling and Suzuki-miniemulsion polymerization, respectively. The structure, morphology and porosity of the CPPs were characterized by Fourier Transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR), transmission electron microscope (TEM) and N2 sorption isotherm, respectively. Both of the CPPs have porous structure which is beneficial for the adsorption and diffusion of the analytes within them. The particle size of PSiAn nanoparticles prepared by Suzuki-miniemulsion polymerization is 10-40 nm from the TEM image, which facilitates the dispersion in the aqueous phase. Combined with the porosity and nanoparticle morphology, PSiAn nanoparticles realized the efficient photoluminescence (PL) sensing of nitroaromatic explosives in aqueous phase. The limit of detection (LOD) and limit of quantitation (LOQ) of PSiAn nanoparticles for 2,4,6-trinitrophenol (TNP) detection in the pure aqueous phase are 0.33 µM and 1.11 µM, respectively. Meanwhile, the good selectivity and anti-interference in presence of other nitro-compounds were observed. Furthermore, the spike/recovery test for the TNP detection in real water samples by PL sensing based on PSiAn nanoparticles indicates the quantitative recovery of TNP from 100.74 % to 101.00 %. The electrochemical test, ultraviolet-visible absorption spectra, excitation and emission spectra, and time-resolved PL spectra were investigated to explore the PL sensing mechanism. As a result, it is found that the fluorescence inner filter effect might be the predominant quenching mechanism during the detection of nitrophenolic compounds such as TNP and 4-nitrophenol (4-NP).
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Spectrochim Acta A Mol Biomol Spectrosc Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Spectrochim Acta A Mol Biomol Spectrosc Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article