Your browser doesn't support javascript.
loading
Adsorption behavior and interaction mechanism of microplastics with typical hydrophilic pharmaceuticals and personal care products.
Sun, Qizhi; Liu, Lu; Gong, Yichao; Liu, Pengyan.
Afiliação
  • Sun Q; School of Eco-Environment, Hebei University, Baoding, 071002, China.
  • Liu L; School of Eco-Environment, Hebei University, Baoding, 071002, China; Environmental Protection Monitoring Center, SINOPEC Zhongyuan Oilfield Branch, Puyang, 457001, China.
  • Gong Y; College of Biological Science and Engineering, Xingtai University, Xingtai, 054001, China.
  • Liu P; School of Eco-Environment, Hebei University, Baoding, 071002, China. Electronic address: hbupyliu@163.com.
Environ Res ; 244: 117897, 2024 Mar 01.
Article em En | MEDLINE | ID: mdl-38103782
ABSTRACT
Microplastics (MPs) and pharmaceuticals and personal care products (PPCPs) are two types of emerging contaminants widely present in the global aquatic ecosystem. The ecological risks associated with the coexistence of these two contaminants have garnered increasing attention from researchers. In this study, we selected 15 typical hydrophilic PPCPs, including Sulfacetamide (SA), Thiamphenicol, Florfenicol, Chloramphenicol (CHL), Ampicillin, Cephalexin, Ofloxacin, Fluorouracil, Phenytoin, Theophylline, Cimetidine, Methylparaben, Diethyltoluamide, Benzophenone-2 (BP-2), and Benzophenone-4, as adsorbates. We evaluated the adsorption potential of five traditional plastics (TPs), namely Polyamide 6 (PA6), Polystyrene (PS), Polyethylene terephthalate (PET), Polyvinyl chloride (PVC), and Polyurethane (TPU), as well as three biodegradable plastics (BDPs), including Polylactic acid (PLA), Polybutylene succinate (PBS), and Poly (ε-caprolactone) (PCL), for these adsorbates. Out of the 120 combinations of MPs and PPCPs tested, only 24 exhibited significant adsorption behavior. Notably, the adsorption performance of the three BDPs was stronger than that of the three typical TPs (PS, PET, and PVC). Based on their adsorption potential, PA6, BDPs, phenytoin, and BP-2 were identified as potential sources of high ecological risk. To further explore the adsorption mechanism, we investigated the adsorption behaviors of SA, BP-2, and CHL on PA6. The conclusions were as follows SA, BP-2, and CHL all reached adsorption equilibrium within 24 h, with the partition coefficient (Kd) following this order BP-2 (8.051) â‰« SA (0.052) > CHL (0.018). The primary forces of adsorption were electrostatic interactions, intermolecular hydrogen bonding, and hydrophobic interaction, respectively. Additionally, weak electrostatic effects were observed in the adsorption of CHL and BP-2. The effects of pH, ionic strength, and fulvic acid on adsorption capacity varied. These results highlight a complex adsorption mechanism between MPs and hydrophilic contaminants in the aquatic environment. This study provides a basis for further evaluating the ecological risks of MPs and PPCPs combined pollution.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Cosméticos Idioma: En Revista: Environ Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Cosméticos Idioma: En Revista: Environ Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China