Your browser doesn't support javascript.
loading
On the Elusive Crystallography of Lithium-Rich Layered Oxides: Novel Structural Models.
Celeste, Arcangelo; Tuccillo, Mariarosaria; Menon, Ashok S; Brant, William; Brandell, Daniel; Pellegrini, Vittorio; Brescia, Rosaria; Silvestri, Laura; Brutti, Sergio.
Afiliação
  • Celeste A; Dipartimento di Chimica, Sapienza Università di Roma, p. le Aldo Moro 5, Rome, 00185, Italy.
  • Tuccillo M; Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, Genoa, 16146, Italy.
  • Menon AS; Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
  • Brant W; Dipartimento di Tecnologie Energetiche e Fonti Rinnovabili, ENEA C.R. Casaccia, via Anguillarese 301, Rome, 00123, Italy.
  • Brandell D; Dipartimento di Chimica, Sapienza Università di Roma, p. le Aldo Moro 5, Rome, 00185, Italy.
  • Pellegrini V; Dipartimento di Tecnologie Energetiche e Fonti Rinnovabili, ENEA C.R. Casaccia, via Anguillarese 301, Rome, 00123, Italy.
  • Brescia R; Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, SE-751 21, Sweden.
  • Silvestri L; WMG, University of Warwick, Coventry, CV4 7AL, UK.
  • Brutti S; Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, SE-751 21, Sweden.
Small Methods ; 8(9): e2301466, 2024 Sep.
Article em En | MEDLINE | ID: mdl-38164821
ABSTRACT
Lithium-rich layered oxides (LRLOs) are one of the most attractive families among future positive electrode materials for the so-called fourth generation of lithium-ion batteries (LIBs). Their electrochemical performance is enabled by the unique ambiguous crystal structure that is still not well understood despite decades of research. In the literature, a clear structural model able to describe their crystallographic features is missing thereby hindering a clear rationalization of the interplay between synthesis, structure, and functional properties. Here, the structure of a specific LRLO, Li1.28Mn0.54Ni0.13Co0.02Al0.03O2, using synchrotron X-ray diffraction (XRD), neutron diffraction (ND), and High-Resolution Transmission Electron Microscopy (HR-TEM), is analyzed. A systematic approach is applied to model diffraction patterns of Li1.28Mn0.54Ni0.13Co0.02Al0.03O2 by using the Rietveld refinement method considering the R 3 ¯ $\bar{3}$ m and C2/m unit cells as the prototype structures. Here, the relative ability of a variety of structural models is compared to match the experimental diffraction pattern evaluating the impact of defects and supercells derived from the R 3 ¯ $\bar{3}$ m structure. To summarize, two possible models able to reconcile the description of experimental data are proposed here for the structure of Li1.28Mn0.54Ni0.13Co0.02Al0.03O2 namely a monoclinic C2/m defective lattice (prototype Li2MnO3) and a monoclinic defective supercell derived from the rhombohedral R 3 ¯ $\bar{3}$ m unit cell (prototype LiCoO2).
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Methods Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Methods Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Itália