Your browser doesn't support javascript.
loading
The male pachynema-specific protein MAPS drives phase separation in vitro and regulates sex body formation and chromatin behaviors in vivo.
Lin, Zexiong; Li, Dongliang; Zheng, Jiahuan; Yao, Chencheng; Liu, Dongteng; Zhang, Hao; Feng, Haiwei; Chen, Chunxu; Li, Peng; Zhang, Yuxiang; Jiang, Binjie; Hu, Zhe; Zhao, Yu; Shi, Fu; Cao, Dandan; Rodriguez-Wallberg, Kenny A; Li, Zheng; Yeung, William S B; Chow, Louise T; Wang, Hengbin; Liu, Kui.
Afiliação
  • Lin Z; Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine; Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, The University of Hong Kong, Hong Kong, China.
  • Li D; Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine; Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, The University of Hong Kong, Hong Kong, China.
  • Zheng J; Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine; Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, The University of Hong Kong, Hong Kong, China.
  • Yao C; Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
  • Liu D; Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine; Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, The University of Hong Kong, Hong Kong, China.
  • Zhang H; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
  • Feng H; Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine; Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, The University of Hong Kong, Hong Kong, China.
  • Chen C; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Massey Cancer Institute, Virginia Commonwealth University, Richmond, VA, USA.
  • Li P; Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
  • Zhang Y; Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
  • Jiang B; Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine; Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, The University of Hong Kong, Hong Kong, China.
  • Hu Z; Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine; Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, The University of Hong Kong, Hong Kong, China.
  • Zhao Y; Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine; Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, The University of Hong Kong, Hong Kong, China.
  • Shi F; Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine; Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, The University of Hong Kong, Hong Kong, China.
  • Cao D; Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine; Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, The University of Hong Kong, Hong Kong, China.
  • Rodriguez-Wallberg KA; Department of Oncology-Pathology, The Karolinska Institute, 14186 Stockholm, Sweden.
  • Li Z; Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
  • Yeung WSB; Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine; Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, The University of Hong Kong, Hong Kong, China.
  • Chow LT; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA. Electronic address: ltchow@uab.edu.
  • Wang H; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Massey Cancer Institute, Virginia Commonwealth University, Richmond, VA, USA. Electronic address: hengbi
  • Liu K; Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine; Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, The University of Hong Kong, Hong Kong, China. Electronic address: kliugc@hku.hk.
Cell Rep ; 43(1): 113651, 2024 01 23.
Article em En | MEDLINE | ID: mdl-38175751
ABSTRACT
Dynamic chromosome remodeling and nuclear compartmentalization take place during mammalian meiotic prophase I. We report here that the crucial roles of male pachynema-specific protein (MAPS) in pachynema progression might be mediated by its liquid-liquid phase separation in vitro and in cellulo. MAPS forms distinguishable liquid phases, and deletion or mutations of its N-terminal amino acids (aa) 2-9 disrupt its secondary structure and charge properties, impeding phase separation. Maps-/- pachytene spermatocytes exhibit defects in nucleus compartmentalization, including defects in forming sex bodies, altered nucleosome composition, and disordered chromatin accessibility. MapsΔ2-9/Δ2-9 male mice expressing MAPS protein lacking aa 2-9 phenocopy Maps-/- mice. Moreover, a frameshift mutation in C3orf62, the human counterpart of Maps, is correlated with nonobstructive azoospermia in a patient exhibiting pachynema arrest in spermatocyte development. Hence, the phase separation property of MAPS seems essential for pachynema progression in mouse and human spermatocytes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cromatina / Meiose Limite: Animals / Humans / Male Idioma: En Revista: Cell Rep Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cromatina / Meiose Limite: Animals / Humans / Male Idioma: En Revista: Cell Rep Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China