Your browser doesn't support javascript.
loading
A fast, scalable and versatile tool for analysis of single-cell omics data.
Zhang, Kai; Zemke, Nathan R; Armand, Ethan J; Ren, Bing.
Afiliação
  • Zhang K; Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA.
  • Zemke NR; Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China.
  • Armand EJ; Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA.
  • Ren B; Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA.
Nat Methods ; 21(2): 217-227, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38191932
ABSTRACT
Single-cell omics technologies have revolutionized the study of gene regulation in complex tissues. A major computational challenge in analyzing these datasets is to project the large-scale and high-dimensional data into low-dimensional space while retaining the relative relationships between cells. This low dimension embedding is necessary to decompose cellular heterogeneity and reconstruct cell-type-specific gene regulatory programs. Traditional dimensionality reduction techniques, however, face challenges in computational efficiency and in comprehensively addressing cellular diversity across varied molecular modalities. Here we introduce a nonlinear dimensionality reduction algorithm, embodied in the Python package SnapATAC2, which not only achieves a more precise capture of single-cell omics data heterogeneities but also ensures efficient runtime and memory usage, scaling linearly with the number of cells. Our algorithm demonstrates exceptional performance, scalability and versatility across diverse single-cell omics datasets, including single-cell assay for transposase-accessible chromatin using sequencing, single-cell RNA sequencing, single-cell Hi-C and single-cell multi-omics datasets, underscoring its utility in advancing single-cell analysis.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Cromatina Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Cromatina Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos