Your browser doesn't support javascript.
loading
A meta-analysis of Boolean network models reveals design principles of gene regulatory networks.
Kadelka, Claus; Butrie, Taras-Michael; Hilton, Evan; Kinseth, Jack; Schmidt, Addison; Serdarevic, Haris.
Afiliação
  • Kadelka C; Department of Mathematics, Iowa State University, Ames, IA 50011, USA.
  • Butrie TM; Department of Aerospace Engineering, Iowa State University, Ames, IA 50011, USA.
  • Hilton E; Department of Computer Science, Iowa State University, Ames, IA 50011, USA.
  • Kinseth J; Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA.
  • Schmidt A; Department of Mathematics, Iowa State University, Ames, IA 50011, USA.
  • Serdarevic H; Department of Computer Science, Iowa State University, Ames, IA 50011, USA.
Sci Adv ; 10(2): eadj0822, 2024 Jan 12.
Article em En | MEDLINE | ID: mdl-38215198
ABSTRACT
Gene regulatory networks (GRNs) play a central role in cellular decision-making. Understanding their structure and how it impacts their dynamics constitutes thus a fundamental biological question. GRNs are frequently modeled as Boolean networks, which are intuitive, simple to describe, and can yield qualitative results even when data are sparse. We assembled the largest repository of expert-curated Boolean GRN models. A meta-analysis of this diverse set of models reveals several design principles. GRNs exhibit more canalization, redundancy, and stable dynamics than expected. Moreover, they are enriched for certain recurring network motifs. This raises the important question why evolution favors these design mechanisms.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Reguladoras de Genes / Modelos Genéticos Tipo de estudo: Prognostic_studies / Qualitative_research / Systematic_reviews Idioma: En Revista: Sci Adv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Reguladoras de Genes / Modelos Genéticos Tipo de estudo: Prognostic_studies / Qualitative_research / Systematic_reviews Idioma: En Revista: Sci Adv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos