Your browser doesn't support javascript.
loading
In Silico prediction of inhibitors for multiple transporters via machine learning methods.
Duan, Hao; Lou, Chaofeng; Gu, Yaxin; Wang, Yimeng; Li, Weihua; Liu, Guixia; Tang, Yun.
Afiliação
  • Duan H; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
  • Lou C; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
  • Gu Y; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
  • Wang Y; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
  • Li W; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
  • Liu G; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
  • Tang Y; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
Mol Inform ; 43(3): e202300270, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38235949
ABSTRACT
Transporters play an indispensable role in facilitating the transport of nutrients, signaling molecules and the elimination of metabolites and toxins in human cells. Contemporary computational methods have been employed in the prediction of transporter inhibitors. However, these methods often focus on isolated endpoints, overlooking the interactions between transporters and lacking good interpretation. In this study, we integrated a comprehensive dataset and constructed models to assess the inhibitory effects on seven transporters. Both conventional machine learning and multi-task deep learning methods were employed. The results demonstrated that the MLT-GAT model achieved superior performance with an average AUC value of 0.882. It is noteworthy that our model excels not only in prediction performance but also in achieving robust interpretability, aided by GNN-Explainer. It provided valuable insights into transporter inhibition. The reliability of our model's predictions positioned it as a promising and valuable tool in the field of transporter inhibition research. Related data and code are available at https//gitee.com/wutiantian99/transporter_code.git.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Mol Inform Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Mol Inform Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China