Your browser doesn't support javascript.
loading
Adsorptive removal of organic pollutants from aqueous solutions using novel GO/bentonite/MgFeAl-LTH nanocomposite.
Bahadi, Salem A; Drmosh, Q A; Onaizi, Sagheer A.
Afiliação
  • Bahadi SA; Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31216, Saudi Arabia.
  • Drmosh QA; Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31216, Saudi Arabia.
  • Onaizi SA; Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31216, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31216, Saudi Arabia. Electronic address: onaizi@kfupm.edu.sa.
Environ Res ; 248: 118218, 2024 May 01.
Article em En | MEDLINE | ID: mdl-38266892
ABSTRACT
The contamination of water with organic pollutants such as dyes and phenols is a serious environmental problem, requiring effective treatment methods. In the present study, a novel nanocomposite was synthesized by intercalating graphene oxide and bentonite clay into MgFeAl-layered triple hydroxide (GO/BENT/LTH), which was characterized using different techniques. The adsorption efficacy of the GO/BENT/LTH nanocomposite was assessed via the removal of two harmful organic water pollutants, namely methyl orange (MO) and 2-nitrophenol (2NP). The obtained results revealed that the maximum adsorption capacities (qmax) of MO and 2NP reached 3106.3 and 2063.5 mg/g, respectively, demonstrating the excellent adsorption performance of the nanocomposite. Furthermore, this study examined the effects of contact time, initial MO and 2NP concentrations, pH, and temperature of the wastewater samples on the adsorptive removal of MO and 2NP by the GO/BENT/LTH nanocomposite. The pH, zeta potential, and FTIR investigations suggested the presence of more than one adsorption mechanism. Thermodynamic investigations elucidated the exothermic nature of the adsorption of MO and 2NP onto the GO/BENT/LTH nanocomposite, with MO adsorption being more sensitive to temperature change. Additionally, regeneration studies revealed a marginal loss in the MO and 2NP removal with the repetitive use of the GO/BENT/LTH nanocomposite, demonstrating its reusability. Overall, the findings of this study reveal the promise of the GO/BENT/LTH nanocomposite for effective water decontamination.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Poluentes Ambientais / Nanocompostos Idioma: En Revista: Environ Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Arábia Saudita

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Poluentes Ambientais / Nanocompostos Idioma: En Revista: Environ Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Arábia Saudita