Your browser doesn't support javascript.
loading
Single-cell RNA sequencing reveals cellular dynamics and therapeutic effects of astragaloside IV in slow transit constipation.
Chen, Huaxian; Wan, Xingyang; He, Qiulan; Xiao, Guozhong; Zheng, Yihui; Luo, Minyi; Yang, Chaoxin; Ren, Donglin; Lu, Li; Peng, Hui; Lin, Hongcheng.
Afiliação
  • Chen H; Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Biomedical Inno
  • Wan X; Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Biomedical Inno
  • He Q; Department of Anaesthesiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
  • Xiao G; Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Biomedical Inno
  • Zheng Y; Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Biomedical Inno
  • Luo M; Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Biomedical Inno
  • Yang C; Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Biomedical Inno
  • Ren D; Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Biomedical Inno
  • Lu L; Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Biomedical Inno
  • Peng H; Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Biomedical Inno
  • Lin H; Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Biomedical Inno
Biomol Biomed ; 2024 Jan 29.
Article em En | MEDLINE | ID: mdl-38289380
ABSTRACT
The cellular characteristics of intestinal cells involved in the therapeutic effects of astragaloside IV (AS-IV) for treating slow transit constipation (STC) remain unclear. This study aimed to determine the dynamics of colon tissue cells in the STC model and investigate the effects of AS-IV treatment by single-cell RNA sequencing (scRNA-seq). STC mouse models were developed using loperamide, with subsequent treatment using AS-IV. Colon tissues and feces were collected for scRNA-seq and targeted short-chain fatty acid quantification. We integrated scRNA-seq data with network pharmacology to analyze the effect of AS-IV on constipation. AS-IV showed improvement in defecation for STC mice induced by loperamide. Notably, in STC mice, epithelial cells, T cells, B cells, and fibroblasts demonstrated alterations in cell proportions and dysfunctions, which AS-IV partially rectified. AS-IV has the potential to modulate the metabolic pathway of epithelial cells through its interaction with peroxisome proliferator-activated receptor gamma (PPARγ). AS-IV reinstated fecal butyrate levels and improved energy metabolism in epithelial cells. The proportion of naïve CD4+T cells is elevated in STC, and the differentiation of these cells into regulatory T cells (Treg) is regulated by B cells and fibroblasts through the interaction of ligand-receptor pairs. AS-IV treatment can partially alleviate this trend. The status of fibroblasts in STC undergoes alterations, and the FB_C4_Adamdec1 subset, associated with angiogenesis and the Wingless-related integration (Wnt) pathway, emerges. Our comprehensive analysis identifies perturbations of epithelial cells and tissue microenvironment cells in STC and elucidates mechanisms underlying the therapeutic efficacy of AS-IV.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Biomol Biomed Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Biomol Biomed Ano de publicação: 2024 Tipo de documento: Article